
7

>
D. Megías Jiménez
j. MAS

J. Pérez López

L. Ribas i Xirgo

AUTHOR: COORDINATOR:

SOFTWARE
Introduction to

DEVELOPMENT

������������
�����������
�����������
����������������������������������
�����������������������
�����������������������
�������������������

������������

��������������������� ������������������������������������

�������������������� ��������� �����������������������

�����������������������������
�����������������������������
������������������������������
������������������������������
����������������������������������
����������������������������������
����������������������������������

�����������������������������
����������������������������
������������������������������
����������������������������������
������������������������������
�������������������������������
�����������������������������������
�����������������������������������
�����������������������������
����������������������������������
���������������������������������
�����������������������������������
�������������������������������
�����������������

���������������������������������
�������������������������������
�������������������������������
�������������������������������
������������������������������������
���������������������������������
����������

�������������������

������������������������������
������������������������������������
����������������������������
������������������������������
����������������������������
�����������������������������
�������������������������������
������

����������������������������
��
�����������������������
�����������������������������
������������������������������������
��������������������
����������������������������

���
��
��
��������

Software has become a strategic societal resource in the last few decades.

e emergence of Free Software, which has entered in major sectors of

the ICT market, is drastically changing the economics of software

development and usage. Free Software – sometimes also referred to as

“Open Source” or “Libre Software” – can be used, studied, copied,

modified and distributed freely. It offers the freedom to learn and to

teach without engaging in dependencies on any single technology

provider. ese freedoms are considered a fundamental precondition for

sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software

and Open Standards), still a limited number of people have sufficient

knowledge and expertise in these fields. e FTA attempts to respond to

this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several

educational institutes in various countries. It aims to contribute to a

society that permits all users to study, participate and build upon existing

knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course

modules about Free Technologies. Learners can choose to enrol in an

individual course or register for the whole programme. Tuition takes

place online in the FTA virtual campus and is performed by teaching

staff from the partner universities. Credits obtained in the FTA

programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning

Programme (LLP) of the European Commission, under the coordination

of the Free Knowledge Institute and in partnership with three european

universities: Open Universiteit Nederland (e Netherlands), Universitat

Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,

educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open

Educational Resources, published under copyleft free licenses that allow

them to be freely used, modified and redistributed. Similarly, the

software used in the FTA virtual campus is Free Software and is built

upon an Open Standards framework.

Preface

Evolution of this book
e FTA has reused existing course materials from the Universitat

Oberta de Catalunya and that had been developed together with

LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book

was translated into English with the help of the SELF (Science,

Education and Learning in Freedom) Project, supported by the

European Commission's Sixth Framework Programme. In 2009, this

material has been improved by the Free Technology Academy.

Additionally the FTA has developed a study guide and learning activities

which are available for learners enrolled in the FTA Campus.

Participation
Users of FTA learning materials are encouraged to provide feedback and

make suggestions for improvement. A specific space for this feedback is

set up on the FTA website. ese inputs will be taken into account for

next versions. Moreover, the FTA welcomes anyone to use and distribute

this material as well as to make new versions and translations.

See for specific and updated information about the book, including

translations and other formats: http://ftacademy.org/materials/fsm/1. For

more information and enrolment in the FTA online course programme,

please visit the Academy's website: http://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning

process and helps you to help others in theirs. I look forward to see you

in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens
President of the Free Knowledge Institute

Director of the Free technology Academy

Acknowledgenments

e authors wish to thank the Fundació per a la

Universitat Oberta de Catalunya (http://www.uoc.edu)

for financing the first edition of this work under the

framework of the International Master's degree in Free

Software offered by this institution.

e current version of these materials in English has

been extended with the funding of the Free Technology

Academy (FTA) project. e FTA project has been

funded with support from the European Commission

(reference no. 142706- LLP-1-2008-1-NL-ERASMUS-

EVC of the Lifelong Learning Programme). is

publication reflects the views only of the authors, and the

Commission cannot be held responsible for any use

which may be made of the information contained

therein.

��������������������� � ������������������������������������

��������

��������

������������������������������

��
�����

�� ���������������������

�� �����������������������������

�� ����������������������

��������

��������������������������

��
�����

�� �������������������������������������

�� ����������������������

�� �������������������������

�� ������������������

�� ���������������

�� ��������

�� ������������������������

�� �������������������

�� �����

��� ���������������������������������

��� ���������

��� ���������������������

��������

���
������������

��
�����

�� �����������������

�� ��������

�� ���

�� ������������������

�� �����������������������

�� ��

�� ������������

�� ���������

�� �������������

��� ��

��� ��

��� ������������������

��� �������

��������������������� � ������������������������������������

��� ���������

��������

����������������������������������

��
�����

�� �������������

�� ��

�� ����������������������������������

��������

�������������������

��
�����

�� ������������������

�� ��������������������������

�� ��������������������������������

�� ������������������������������������

�� ���������������

�� ����������������������������

�� �������������������������������������

�� �����������������

�� �������

��� ��������������������������������������

��� ����������������������������������

��������������������� � ������������������������������������

��������

���

����������������������������

��

���

���

������������

������������ �������� ��� �� �������� ���������� ������ ������������� ���

���

������������� ��� ��������� ���� ��������� ������� ����� ������������ ������������

��

������������ ������������ ����������� ��� �� ����������� ��� �����������

���

���������������� ����������������� ����� �������� ������������� ����� ���� ����

���������

�����������

���

���

�������������������

���������� ��� �� ����� ���������� ��� ���� ����� ��������� ������ ��� ������ ���

���

���

����������������������������

���

���

��

��

��

���������������������������

���

��

����� �������� ������ ���������� ����� ������� ���� ����������� ��� ���� ���������� ��

��

���

���

��

��������������������� � ������������������������������������

�������������������������������� �������������������� ����� ����������������

��

���

��

�����������������������

��

��

���

���

��

���

������������������������

���

��

���

���

��

������

���

�����������������������

��

���

��

��

������������

���

����������������������������������

����������� ������������� ��� ������������ ������ ���������� �����

��

������������� ���

��

��

����� ����������� �������� ������ ���� ���� ������������ ��� ��������� ���������

������������������������������������

������������

��������������������� � ������������������������������������

����������� ��� �� ����������� ��� ������� ������������ ��������� �����

��

����� �������� �� ���������������������� ��������� ��� ��� ��������� ����� ���

���������

����� ������������ ����� ��� �� ���� ��� ��������� ���� ���������� ����� ���� ���

���

������������

��

���

������������

���

��

���������������������������

��

���

������ ��

��������� ��� ������ ��� ������������ ����� ������ ����� ����� �������� ���� ���

��

���

�����������

���

��

��

�������� ������������� ��� �� ������������ ���������� ��� ������ ���

��

���

���

���

������ ���� ����� ������ ������ �������� ������� ����������� ���� ����� �����

�����������

��� ��������������

�������������������������������

�������������� ������ ���������� ��� ������ ��� ������� ���� �������� �������

������

��

��������������������� �� ������������������������������������

���������������������������������������

��

�����������������������������

���

��

������������ ���������� ��� �� ��������� ����� ��� ��������� �� ��������

��������

���

����������

��

�������� ��� �� �������� ���� ���� �������� ���������� ��� �� ��������� ��� ������ �

��

���������� ���� �� ����������� ��� �� ����� ��� ����������� ����� ���� ��������� ��

���

���

�������������������������������

����������� ������������� ��� �� ������������ ���������� ����� ����� ���

����������� ������������ ��� ������������� ����� ����������� ��� ������������

���

������� ��� �� �������� ��� ��������� ��������� ����� ������ ��� ��� ������� �� ����

��

��

������� ���� ����� ��������� ����� ������ ��� �� ������ �������� ��� ��� ������� ���

���

��

��

�������� ���������� ���������� ��� �� �������� ��������� ���� ��������

��

��

������������

��������������������� �� ������������������������������������

������������

���

����������������������

����� ����� �������� ������������� ��� ������������ ������ ����� ����� �����

��

��

�����������������������������������
��

������������������������������������

���

��

��

��������� ���� ���������� ��� �������� ������������ ��� ��� ������������� ����

���

����������� ������ ������ ��� ������������ ��������� ��� ��������������������

��������������

����������� ��� ���� ��������� ��� ��� �������������� ������������ ��������

���������������������������������������

��

��������������������������

��

�����������������������������

��

������������

������� ���� ������� ��� �������� ������������� ��� ���������� �������������

������������� ������ ����������� �������������������� ����� �������� ����������

���

���

���

���� �������������� ����� �������� ���� ����� ���������� �� ���������� ������ ���

��

�������� ���� �������� ��� �������� ������������ ����������� ����������� ���

�������������������������������

��������������������� �� ������������������������������������

��������

������������������������������

������������������������������

��������������������������

���������� ���� ��������������� ����� ��������� ������������ ����� ��� ������

���

��������������������������������������� ���������������������������������� ��

������������

�����������

��

��

��

���

��

��

����� �������� ��� �� �������� ������������������������ ����� ����������������� ��

������������������ �������������� ����� ��� ���� ����� ������� ��� �����������

���

���������

���

��

���

��

���

���

�������������

��������������������������������

����� �������� �������� ��� ���� ������� ��� ������ ������ ��� ���� �������� ����

���

��

��

�������� ���� ������������ ������� ������� ��� ���� ������������ ��� ������ ���

��������������������� �� ������������������������������������

������� ��� ���� ������� ��� �� ���������� ���� ��� ���������� ��� ������� ���� ������

���� �������� ��� ���� ������������� ��� ����������� ��������� ��� ������ ���������

�������������������������������

�� ���������� ��������� ��� ���� ��������� ������ ���� ����� ����������� ���

��

��

��

��������� �� �����������������

�������� ��� ������������� ��� ��������������� �������� �������� ���� ��� �������

��������� ���� ��������� �������� ����� ������ ����� ��������� ������� ����� �������

��������� ������� ��� ���� ��������� ��� ��� ����� �� ��������� ��� ������������� �

��

��

���

�����

���� ����������� ���������� ���� �������� ���������� ��������� ������ ������� ���

��

��

���

�� ��������������������

��

���� ������� ������� ���� �������� ������ ��������� ��� ����� ����� ���� �������� ��

������������ ������ ��� ����������� ������� ��� ���� ������� ����� ����� ����� ���

��

���

�� �������������� ����� ��� ���� ��������� ������ �� ����������������� �����

���

��

�������� ��� ����� ������� ��������� ��� �������� �������� ������ ��������� ��� ����

��

��

���� ������ ��� ����� ������������������������ ���������������������������� ����

���

���

��

��

��������� ��� ��������� �������� ���� ������������ ������� �������� ������ �����

�������� �������� �������� ������ �������� ������ ������ �������� ����� ��

���� ������ �� ��������� ���������� ����� ���� �������������������� ������

������ ����������� ��� ���� ��������� ���� ������ �������������� ��������� ��

��������������������� �� ������������������������������������

������������ ������ �������� �������� ����� ���� ���� ����� ������� �������

���

��

��

��

���� ������� ������������� ���� �� �������� ������ ���� ������ ����� �������� ����� ����

���������� ������ ��� ���� ������� ��� ������ ��������� ���� ��������� ����� �������

��

���

��

�� �������� ��������������������� �������� �������� ��� ������������������

������ ������� ��� ����������������� ������������� ��������������� ���������� ����

����� ����������� ���� ��� �������� ���������� ������ ���� ������� ���� �� ��������

��

���

����������� ������������������� ����� ��� �������� �� �������� ��������������

�����������������������������

��

��

���

���

��

�������������������

���� ���� ����� ���� ����������� ���� ��������� ��� ���� �������� ������

��

���

���

��� ������ ��� ����� ��������� �������� ���� ���� ������������������� ��� ��������

��� �������� ���� �������� ��� �������� �������� ��� ���� ������� ���� ����� ��

��

��

������������������������

���

����������������������������

����������������������

��

����������� ����������������������������� ���������� ���� ��������������

���

���

��������������������� �� ������������������������������������

��

���

���

���

���

���

������������������

��� ���� ��������� ������ ��������������������� ��������������� ��� ���� ������������

���

��

��� ���� �������� ��� ����������� ������� ������� ��� ���� ��������� ���������

����� ����� ����� ���� ����� ������� �������� �� ���������������� �����������

������������������������������������� ������ ���������������������������

���

���

���

��

���� ������ ������������� ��� ������� ������� ��� ���������� ��� ������� ����� ����

���������������������� �������������������������� ����������� �����������������

���

��

���

��

���

����������������

��

��

������������������������ ����� �������������� ��������������������� �������� ���

����� ��� �������������� ����� ����������������������� �������������������� ���

��

�������������������������������������

���

��

��

��

�����������

��������������������� �� ������������������������������������

��

���

��

��

���

�����������������

��

���

������������������������

��

��

��

��� ��������� ��� ����� �������� ������� ���� ����� ������ ��� ���������� ��������� ���

��

���

��

���

��

���

���

���

������������ ������������ ���������� ��� ����������� ��� ������������� ����������

������� ��� �� ������������ ����� ��� ���� ���������� ���� ��������� ���� �������

��

���

���

��

���

���

��

���

��

����������������������

��

���������������������������������

��������������������� �� ������������������������������������

���������� �������� ���� ��������� �������� ��� ��� ��������� ��������������� ��� ��

���

�������������������������������������

��� ������������� �������� ��������� ���� ������������� ��������� ��� ����������

��

���

��

���

���������������

���

��

����������� ��� ����� ������� ��� ����� ���� ����� ���� ����� ��������� ��� ��

���

��

���

��

���

���

���

���

��

����

���� ���������� ���� ������������� ��� ���� ��������� ��� ���� ��� ����� �������

����� ����������� ��� ���� ������ ������ ���� ���������� ���� ��� ��� ������� ��� �����

������������������������������������

����������������������

���

��������������� ���� �������������� ��� ���������������� ����������������������

��

��

���

�������������������������������

��

���

���

���

��

����������������

��������������������� �� ������������������������������������

��

���

���

��

���

��

���������������������������

��

��

���

���

���������������������������������������

���

��

���

����������������������������������

�������������������������������������

�� ��������������� ���������������� ���� ����������������������� ��������� ���

������������ ���������� ��� ������� ��� ��� ��� �� ������� ��� �� �������� ��

���

��

��

��

���

����������������

��� ��������������� ��������������� ���������� ��� ����������� ��� ������ ���������

���� ���������� ����� ��� ���� ��������� ��� ����� ����� ���� ����� ��� ���� ������

��

��

�����������������������������������

���������� ����� ����� ������� ��� �������� ������� ����� �������� ���� �����

����������

��������������

������������ ��� ����������� �� ����� ��� �������������� ��� ���� ���� ����������

������������� ��� ���� ��������� ������ ���� ������ ��� �������� ��� ���������

���������� �������������� ������������� ��������� �������� ����������� ����� �����

��������������������� �� ������������������������������������

��

��

���

���������� ���� �������������������������� ��������� ����� ���� ����� �������

���

�������� ����������������� ��� �������� ����������������������� ���� �����������

��

���������������������

���

��

��

��������������

������������ �������������� ������������ ��� ����������� ������������� ������

��� ���������� ��������� ���� ������ ����� ��������� ���� ������ �������� ��� �����

���

��

�������� ��� �������� ����� ���� ������ ����� ������������� ���� ����� ������ ��������

���

������������������������������������

���

��������������������������� ���������� ��� �������������������������������

���

���

��

���

��

���

���

���

��

��

�� ���������������������

���

��������������������������

�����������������������������

��������������������� �� ������������������������������������

���

���� ������ ��� ���� ���� ����� �������������� ��������� �������� ���� ��� ���

��

��

�� ����� ��� ���� �������� ��� ��������� ��� ���� �������� ��������� ����� ����

�����������������������

��� ���� ����� ���������� ���������� ������������ ������ ���� ����������� ������

���

���

���

��� ���� ����� ���������� ��������� �������� ������ ������� ��� ����� �����

���

��� ����� ��������� ��������� ����������� ��������� ��� �������� ������ ��

���������� ���������� ������ ��������� ������������ ������ ����� ������� ��� ����

���

�����������������

An introduction
to programming

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Josep Anton Pérez López
Lluís Ribas i Xirgo

PID_00148431

GNUFDL • PID_00148431 An introduction to programming

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148431 An introduction to programming

Index

Introduction... 5

1. A bit of history on C.. 7

2. GNU/C programming environment.. 10

2.1. Our first C program .. 11

2.2. The structure of a simple program ... 13

3. Imperative programming.. 16

3.1. Basic data types ... 17

3.1.1. Compatible with integers .. 17

3.1.2. Real numbers ... 18

3.1.3. Declarations ... 19

3.2. The assignment and evaluation of expressions 20

3.2.1. The operators ... 20

3.2.2. Typecasting .. 22

3.2.3. Relational operators ... 22

3.2.4. Other operators .. 23

3.3. Selection instructions .. 24

3.4. Standard input and output functions .. 26

3.4.1. Standard output functions .. 26

3.4.2. Standard input functions .. 28

Summary.. 30

Self-evaluation.. 33

Answer key.. 34

GNUFDL • PID_00148431 5 An introduction to programming

Introduction

This unit looks at the fundamentals of programming and the basic concepts of

the C language. It is assumed that the reader already has a certain knowledge

of programming using either C or another language.

For this reason we will take a special look at the methodology of programming

and key aspects of the C language and will not be covering the more basic

aspects of these issues.

Profound understanding of a programming language does not just come

from knowledge of its lexicon, syntax or semantics, but also requires an

understanding of the goals which motivated its development. In this unit we

will therefore be looking at the history of the C programming language from

the perspective of computer programming.

Programs written in languages such as C can not be directly run by computers.

We therefore need other tools (programs) to produce other programs which

contain a sequence of commands that can be directly run by a computer.

As such we are going to look at the free software development environments

which are available for platforms such as Microsoft and GNU/Linux. Given

that the first of these requires an operating system which is not based on free

software we will concentrate on the second.

The rest of the unit focuses on the C programming language, the imperative

programming paradigm and its execution model. The execution model deals

with the way the program's instructions are performed. The imperative

programming paradigm uses instructions as commands which are carried

out immediately, these cause changes in the state of the processor and, in

particular, store the results of calculations carried out in the execution of the

instructions. As such, the final sections will deal with issues surrounding the

evaluation of expressions (calculating the results of formulas), the selection of

instructions to be performed and obtaining data or producing results.

In this unit we are aiming to achieve the following goals:

1) To review the basic concepts of programming and program execution

models.

2) To understand the fundamental paradigm of imperative programming.

3) To acquire the concepts of C needed for this course.

Note

In this context a platform is
a system made up of some
type of computer running an
operating system.

GNUFDL • PID_00148431 6 An introduction to programming

4) To learn how to use a free software development environment for

programming in C (GNU/Linux and GNU/C tools).

GNUFDL • PID_00148431 7 An introduction to programming

1. A bit of history on C

The C programming language was designed by Dennis Ritchie at Bell

Laboratories for the development of new versions of the Unix operating

system in 1972. Hence the strong relationship between C and the machine.

Note

It is interesting to note that only thirteen thousand lines of C code (and less than a
thousand in assembly language) were needed to program the Unix operating system for
the PDP-11 computer.

Assembly language is much closer to the machine code which is understood

by the processor. In other words, each machine code instruction corresponds

to an assembly language instruction.

Conversely, C language instructions can be compared to small programs in

machine code, but which are often used in algorithms for computer programs.

This means that instructions created in this language can only be processed by

an abstract machine which does not in fact exist in reality (the processor only

understands machine code). This means we can speak about C as a language

with a high level of abstraction and assembly as a low level language.

This abstract machine can be partially constructed using a set of programs

which manage a real machine: the operating�system. The other part is built

using a program to translate the high-level language to machine code. These

programs are called compilers and they generate code which can be directly

executed by the computer, or interpreters if they need to be executed to carry

out the program written in a high-level language.

In our case we would prefer that the code of the programs making up the

operating system be as independent from the machine as possible. It will only

be viable to adapt an operating system to any computer quickly and easily if

this is the case.

The high-level language compiler must also be extremely efficient. Given

the scarcity of computing resources (basically memory capacity and speed)

in computers of those days, the language needed to be simple and to allow

translations which were highly adapted to the processors.

For this reason the C language was derived from the language known as B,

this was developed by Ken Thompson to program Unix for the PDP-7 in

1970. Evidently this version of the operating system also included a part

programmed in assembly language as there were operations which could only

be performed by a real machine.

GNUFDL • PID_00148431 8 An introduction to programming

We can clearly look at C as a later version of B (improved with the inclusion

of data types). Furthermore, the B language was based on BCPL. This language

was developed by Martin Richards in 1967 and its basic data type was

the memory word; this being the unit of information into which computer

memory is divided. This was in fact just an improved assembly language which

required a very simple compiler. The programmer thus had more control over

the real machine.

Despite its development as a language for programming operating systems

and, therefore, with the ability to express low-level operations, C is a general

purpose. This means it can be used to program application algorithms (groups

of programs) with very different characteristics, for example, accounting

software for businesses, databases for aircraft reservations, goods transport

fleet management, scientific calculations etc.

Bibliography

The syntactical and semantic rules of C are included in the following work:

B.W.�Kernighan;�D.M.�Ritchie (1978). The C Programming Language. Englewood Cliffs,
NJ: Prentice-Hall. Specifically in the Appendix "C Reference Manual".

The relative simplicity of the C language, in that it has few instructions,

allows compilers to generate machine code very efficiently and also

makes it easy to port from one machine to another.

On the other hand, the list of instructions in C also allows for structured

programming with a high level of abstraction. This makes programming

systematic, legible and easy to maintain.

This simplicity has also meant that C had to be given a very complete set

of functions, making it very powerful for the development of applications

of all types. Many of these functions are standard and are available on all C

compilers.

Note

A function is a sequence of instructions which are executed one-by-one to perform a
specific task. As such, the more functions that are programmed beforehand, the less code
will be needed.

Standard C functions are contained in a library. the standard function library.

Any program can therefore use all of the functions required as all compilers

have them.

Lastly, given its dependence on standard functions, C encourages modular

programming in that programmers themselves can also create specific

functions in their programs.

GNUFDL • PID_00148431 9 An introduction to programming

All of these features meant that C was widely distributed and it was

standardised by ANSI (American National Standards Institute) in 1989 based

on the work of a committee created in 1983 to "provide an unambiguous

definition independent of machine code". The second edition of Kernighan

and Ritchie, which was published in 1988, uses this version, which is known

as ANSI-C.

Note

The original version of C then became known as K&R C, meaning Kernighan and Ritchie
C. This was to distinguish the original version from the one standardised by ANSI.

The rest of the unit will be dedicated to explaining a program development

environment in C and reviewing the syntax and semantics of the language.

GNUFDL • PID_00148431 10 An introduction to programming

2. GNU/C programming environment

In the development of free software it is also important to use tools (programs)

which are also free, one of the principles of free software is that its code can

be modified by users.

The use of code which may depend on private software implies that this is

not possible, it can not therefore be considered as being free. To avoid this

problem we need to program using free software.

GNU (www.gnu.org) is an open software development project started by

Richard Stallman in 1984 and it is supported by the Free Software Foundation

(FSF).

GNU is a recursive acronym (it means GNU is not Unix) to indicate that it

is free software developed using this operating system but that it is not the

operating system itself. Although the software initially used a Unix platform,

which is a private operating system, it was not long before the Linux kernel was

incorporated as the foundation of an independent and complete operating

system: GNU/Linux.

Note

The kernel of an operating system is the software forming the fundamental nucleus,
hence the name (kernel means "the essential part" among other things). The nucleus is
basically in charge of managing the resources of the machine for programs running on it.

The Linux kernel is compatible with Unix and was developed by Linus

Torvalds in 1991, it was implemented as the kernel of the GNU operating

system a year later.

We also need to remember that the so-called Linux distributions are in fact

versions of the GNU/Linux operating system and therefore use GNU software

(Emacs text editor, C compiler etc.) and other free software such as the TeX

text formatter.

When developing free programs we will therefore use a computer running the

Linux operating system and the C compiler for GNU (gcc). Although we could

use any text editor it would seem logical to use Emacs. An ASCII text editor

is one which only uses the characters defined in the ASCII table for storing

text. (In Emacs, the representation of text can be modified to make comments

easily distinguishable from the C program code, for example).

GNUFDL • PID_00148431 11 An introduction to programming

Although the explanations on the software development environments given

in this and later units refer to GNU software, we should note that it is also

possible to use free software tools for Windows, for example.

In the following sections we will learn how to use the gcc compiler and we

will take a close look at the organisation of code in C programs.

2.1. Our first C program

A program is a text written in a simple language allowing us to express

a series of actions to be performed on objects (instructions) in an

unambiguous way.

Before writing a program, as with all written text, we need to know the rules

of the language so that it can be expressed correctly both in terms of lexicon

and syntax.

We will progressively look at the rules of the C programming language over

the course of the first three units.

We also need to make sure that "this" makes sense and that we have expressed

exactly what we want the program to do. If this was not enough, we also

need to take care with the appearance of the text so that it can be quickly and

easily understood. Although style rules will sometimes be indicated, these will

normally be implicitly described by the examples.

To write a program in C we need to run emacs:

$ emacs hello.c &

Note

The dollar sign ($) is used to
indicate that the operating
system command interpreter
can accept a new order.

We can now write the following program in C:

#include <stdio.h>

main()

{

 printf("Hello world! \n");

} /* main */

It is very important to remember that C (and also in C++ and Java) is case

sensitive. This means that the program must be written exactly as shown,

with the exception of text in inverted commas or text between the symbols

/* and */.

Note

The name of the file
containing the C program will
have the extension ".c" so
that it can be easily identified.

Example

Writing printf is not the
same as writing PrintF.

GNUFDL • PID_00148431 12 An introduction to programming

The text editor emacs has drop-down menus at the top for most operations

and it also accepts keyboard commands. You will need to hold down the

control key ("CTRL" or "C-") or the Alt key when pressing the command key.

Some of the most frequently-used commands are summarised on the

following table:

Table 1.

Command Sequence Explanation

Files → Find file C-x, C-f Open file. The file is copied to a buffer or temporary
area for editing.

Files → Save buffer C-x, C-s Saves the content of the buffer to the associated file.

Files → Save buffer as C-x, C-w Writes the content of the buffer to the file indicated.

Files → Insert file C-x, C-i Inserts the content of the file indicated at the cursor
position.

Files → Exit C-x, C-c Exits emacs.

(cursor movement) C-a Places the cursor at the start of the line.

(cursor movement) C-e Places the cursor at the end of the line.

(line killing) C-k Deletes the line (first the content and then the return).

Edit → Paste C-y Pastes the last text removed or copied.

Edit → Copy C-y, ..., C-y To copy text, it can first be deleted and then restored
in the same place and then in the destination position.

Edit → Cut C-w Removes the text from the last marker to the cursor.

Edit → Undo C-u Undoes the last command.

Once the C program has been edited and saved it must be compiled to get

the binary file (ones and noughts), this contains a version of the program

translated into machine code. To do this we will use the gcc:

$ gcc –c hello.c

Note

Previously, gcc stood for the GNU C compiler, but as the compiler also understands
other languages it has become a collection of GNU compilers. For this reason we need to
indicate the language in which the program has been written using the corresponding
file name extension. In this case with, the name hello.c, we will use the C compiler.

This will give us a file (hello.o), known as an object file. This file contains

the program written in machine code which was derived from the program

written in C code, also known as source code. However, we are still not able

to execute this program as it requires a function (printf) contained in the

standard function library for C.

Note

For a better understanding of
commands we recommend
you to read the emacs
manual, or that of the editor
you have chosen to write
programs with.

GNUFDL • PID_00148431 13 An introduction to programming

To get the executable code for the program, we need to link:

$ gcc hello.o –o hello

As the location of the standard function library will always be known by the

compiler this does not need to be entered in the command line. However, we

do need to indicate the file we want to process (the executable file) using the

-o option followed by the desired name. If we do not do this we will get the

result in a file called "a.out".

The compilation and linking process is usually done directly using:

$ gcc hello.c –o hello

If the source file contains syntax errors the compiler will show the

corresponding error message and they must be corrected before repeating the

compilation process.

If all goes well we will have an executable program in a file called hello which

will greet us each time we run it.

$./hello

Hello world!

$

Note

We need to indicate the access path for the executable file so that the command
interpreter can find it. For safety reasons the working directory is not included by default
in the set of search paths for executables of the command interpreter.

This procedure is repeated for each program written in C in a GNU

environment.

2.2. The structure of a simple program

In general a C program should be organised as follows:

/* File: name.c */

/* Content: example of the structure of a C program */

/* Author: name of the author */

/* Version: preliminary */

/* PREPROCESSOR COMMANDS */

/* -inclusion of header files */

#include <stdio.h>

/* -definition of symbolic constants */

#define FALSE 0

GNUFDL • PID_00148431 14 An introduction to programming

/* PROGRAMMER FUNCTIONS */

main() /* Main function: */

{ /* The execution of the program starts here */

... /* Body of the main function */

} /* main */

With this organisational layout the first lines are comments which identify the

content, author and the version. This is important, we need to remember that

the source code we create must be easy to use and modify by other people...

and also by ourselves!

Given the simplicity of C, many of the operations performed by a program

are in fact standard function calls. In order for the compiler to know the

parameters they have and which values to return, we need to include

declarations of the functions used in our code. To do this we use the command

#include of the so-called C preprocessor, this sets up a unique input file for

the C compiler.

Files which contain function declarations outside of a certain file are called

header files. This is why the extension ".h" is used to indicate its content.

In C, header files are used to declare the name of a function, the

parameters it must receive and the type of data returned.

Both these files and the source code of a program contain definitions of

symbolic constants. Some of these definitions are shown below:

#define EMPTY '\0' /* The ASCII NULL character */

#define OCTAL_NUMBER 0173 /* An octal value */

#define MAX_USERS 20

#define HEXA_CODE 0xf39b /* A hexadecimal value */

#define PI 3.1416 /* A real number */

#define PRECISION 1e-10 /* Another real number */

#define STRING "characters string"

These symbolic constants are replaced by their value in the file which is sent

to the C compiler. It is important to note that they are used to make the code

more legible and also to facilitate changes to the program when necessary.

We must remember that integer numeric constants written in base 8, or octal,

must be preceded by a 0 and those expressed in hexadecimal, or base 16, by

"0x",

Note

Comments are any text which
is written between the symbols
/* and */.

GNUFDL • PID_00148431 15 An introduction to programming

Example

020 is not the same as 20 as the second of these corresponds to the value twenty on
decimal and the first is expressed in base 8, the binary representation of which is 010000,
or 16 in base 10.

The program is written in the body of the main function. This function must

be present in all programs and the first instruction it contains is taken as the

starting point of the program, as such it will be the first to be executed.

GNUFDL • PID_00148431 16 An introduction to programming

3. Imperative programming

Programming consists of the translation of algorithms into programming

language versions which can be directly or indirectly executed by a computer.

Most algorithms are made up of a sequence of steps indicating what needs

to be done. These instructions are usually imperative in nature, meaning that

they are unconditional.

The programming of algorithms in these terms is known as imperative

programming. In these types of programs each instruction involves the

performance of a certain action on its surroundings, in this case, the computer

running the program.

To understand how an instruction is executed we need to know more about

the surroundings in which it is carried out. Most processors are organised in

such a way that the data and instructions are stored in the main memory and

the central processing unit (CPU) carries out the algorithm in order to execute

the program in the memory:

1) Read the instruction to be executed from the memory.

2) Read the data required for execution from the memory.

3) Perform the calculation or operation indicated in the instruction and,

depending on the operation, save the result in the memory.

4) Determine the next instruction to be executed.

5) Return to the first step.

The CPU references the instructions and data requested from the memory and

the results it wishes to store using the position number they occupy in the

memory. The position occupied by the data and instructions is known as the

memory address.

At the lowest level each different memory address is a single byte and data

and instructions are identified by the address of the first byte they occupy. At

this level, the CPU corresponds to the physical CPU of the computer.

GNUFDL • PID_00148431 17 An introduction to programming

On the level of the abstract machine which executes C, data and instructions

are still referenced from the physical memory address, but the instructions

which can be executed by the high level CPU are more powerful than those

which can be performed by the real one.

Independently of the level of abstraction at which we are working, the

memory is the environment of the CPU. Each instruction carries out a

modification to the environment in this execution model: they can modify

data in the memory and will always determine which is the address of the

next instruction to be executed.

In other words: the execution of an instruction will imply a change in the state

of the program. This includes the address of the instruction being executed

and the value of data in the memory. Carrying out an instruction therefore

involves changing the state of the program.

In the following sections we will describe the basic data types which a C

program can use and the fundamental instructions which change its state:

the assignation and conditional selection of the following instruction. Lastly,

we will look at the standard functions for obtaining external data (from the

keyboard) and for displaying it (via the screen).

3.1. Basic data types

The types of primitive data which a language can use are those which can

be processed by instructions in the same language; meaning that they are

supported by the corresponding programming language.

3.1.1. Compatible with integers

In C the most common primitive data types are those which are compatible

with integers. The binary representation of these is not encoded but

corresponds to the numeric value represented in base 2. We can therefore

calculate its numeric value in base 10 by adding the products of the intrinsic

values (0 or 1) of the digits (bits) by its corresponding position values (2 position).

They are treated as natural numbers, or rather as representations of integers

in base 2, if they can be negative. In this case, the most significant bit (the

one furthest to the left) is always a 1 and the absolute value is obtained

by subtracting the natural number from the maximum value which can be

represented with the same number of bits plus 1.

We must always remember that the range of values for this data will depend on

the number of bits used to represent it. The following table shows the various

integer-compatible data types in a 32-bit computer running a GNU system.

GNUFDL • PID_00148431 18 An introduction to programming

Table 2.

Specification Number of bits Range of values

(signed) char 8 (1 byte) from –128 to +127

unsigned char 8 (1 byte) from 0 to 255

(signed) short (int) 16 (2 bytes) from –32,768 to +32,767

unsigned short (int) 16 (2 bytes) from 0 to 65,535

(signed) int 32 (4 bytes) from –2,147,483,648 to +2,147,483,647

unsigned (int) 32 (4 bytes) from 0 to 4,294,967,295

(signed) long (int) 32 (4 bytes) from –2,147,483,648 to +2,147,483,647

unsigned long (int) 32 (4 bytes) from 0 to 4,294,967,295

(signed) long long (int) 64 (8 bytes) from -263 to +(263-1) ≈ ±9.2x1018

unsigned long long (int) 64 (8 bytes) from 0 to 264-1 ≈ 1.8x1019

Note

The words of the specification in brackets are optional when declaring the corresponding
variables. We must also bear in mind that the specifications can vary slightly for other
compilers.

We must always remember the different value ranges that each type of

variable can take to be correctly used in programs. We can adjust this

value to the one which is most useful.

The character type (char) is an integer which identifies a position on the table

of ASCII characters. To avoid having to translate the characters to numbers

they can be entered between single inverted commas (for example: 'A'). We

can also represent non-visible codes such as a line feed ('\n') or tab ('\t').

3.1.2. Real numbers

This data type is more complicated than the one above and its binary

representation is encoded over several fields. It does not therefore correspond

to the number which can be extracted from the bits making it up.

Real numbers are represented using a sign, mantissa and exponent. The

mantissa expresses the fractional part of the number and the exponent is the

number to which the corresponding base is raised.

[+/-] mantissa x base exponent

Example

In this standard the letter A in
capitals is found at position
number 65.

GNUFDL • PID_00148431 19 An introduction to programming

The values of the mantissa and exponent will be higher or lower depending on

the number of bits used to represent them. The various types of real numbers

and their approximate ranges are shown in the following table (valid for 32-bit

GNU systems):

Table 3.

Specification Number of bits Range of values

float 32 (4 bytes) ±3.4 x 10 ±38

double 64 (8 bytes) ±1.7 x 10 ±308

long double 96 (12 bytes) ±1.1 x 10 ±4.932

As we can see from the above table, it is important to adjust the real data type

to the range of values which a certain variable may acquire so as not to occupy

memory unnecessarily. The reverse is also true: the use of a data type which is

not able to represent the extreme values of the range being used will mean that

they are not represented correctly, the program may then behave erratically.

3.1.3. Declarations

Declaring a variable involves making the compiler aware of it so that it can

reserve a space in memory to store its data. A declaration is made by stating its

type specification before the name (char, int, float, double), this may

also be preceded by one or more modifiers (signed, unsigned, short,

long). The use of a modifier makes specification int unnecessary except for

long. For example:

unsigned short natural; /* The 'natural' variable is */

 /* declared to be a */

 /* positive integer. */

int i, j, k; /* Integer variables with a sign. */

char option; /* Character-type variable. */

float percentile; /* Real number variable. */

For greater ease a variable can be assigned a specific initial content. To do this

we need to add an equal sign to the declaration followed by the initial value

on execution of the program. For example:

int value = 0;

char option = 'N';

float angle = 0.0;

unsigned counter = MAXIMUM;

GNUFDL • PID_00148431 20 An introduction to programming

The name of a variable can contain any combination of alphabetic characters

(meaning those of the English alphabet), numbers and also the underscore

sign (_); however they may not begin with a digit.

We recommend that you choose variables names which identify their

content or their use in the program.

3.2. The assignment and evaluation of expressions

As we have already mentioned, in imperative programming the execution

of instructions involves changing the state of the program environment

or, similarly, changing the reference of the instruction to be executed and

possibly the content of one variable or another. The last of these occurs when

the instruction executed is an assignment:

variable = expression in terms of variables and constant values;

The power of C (and possibly the difficulty in reading programs) arises from

the use of expressions.

In fact, any expression is converted to an instruction if we put a semi-colon

at the end: all instructions in C end in a semi-colon.

Obviously, solving an expression makes no sense if we do not then assign the

result to a variable which can be stored for later operations. Therefore the first

operator we need to look at is that of assignment:

integer = 23;

destination = origin;

It is important not to confuse the assignment operator (=) with the

equality comparator (==); in C both of these operators can be used

between data of the same type.

3.2.1. The operators

Apart from assignment, the most frequently-used operators in C, and which

also appear in other programming languages, are those shown in the following

table:

Note

An expression is any
syntactically valid combination
of operators and operands,
these may be variables or
constants.

GNUFDL • PID_00148431 21 An introduction to programming

Table 4.

Class The operators Meaning

+ - add and subtract

* / multiply and divide

Arithmetic

% modulus or remainder after integer
division (only for integers)

> >= "greater than" and "equal to or greater
than"

< <= "less than" and "equal to or less than"

Relational

== != "equal to" and "not equal to"

! NO (logical proposition)Logical

&& || AND (all parts must be satisfied) and
logical OR

Arithmetical operators can be used for both real number and integers.

For this reason we implicitly perform all operations using the data type

with the greatest range.

This implicit behaviour of operators in known as data type promotion and it is

performed each time different types of data are operated upon.

For example, the result of an operation using an integer and a real number

(real constants must contain a decimal point or the letter "e" separating the

mantissa and the exponent) will always be a real number. Conversely, if the

operation involves two integers the result will always be expressed in the

integer data type with the greatest range. So:

real = 3 / 2 ;

results in the assignment of the value 1.0 to the variable real, this is the

result of the integer division of 3 by 2, transforming it into a real number

when the assignment operation is performed. That is why it is written as 1.0

(with a decimal point) instead of 1.

Even so, the assignment operator always converts the result of the source

expression to the data type of the destination variable. For example, the

following assignment:

integer = 3.0 / 2 + 0.5;

GNUFDL • PID_00148431 22 An introduction to programming

assigns the value 2 to integer. In this case the real numbers are divided (the

number 3.0 is real as it has a decimal point) and 0.5 is added to the result. This

acts as a rounding factor. The resulting number is real and it is truncated (its

decimal is removed) when it is assigned to the variable integer.

3.2.2. Typecasting

To improve the legibility of the code, to prevent incorrect interpretation and to

prevent the erroneous use of automatic type promotion, we recommend that

you explicitly indicate that the data type has changed. We can use typecasting

to do this, this means: putting the data type we wish to convert a certain value

to in brackets (whether it is a constant or a variable):

(type_specification) operand

Following the above example it is therefore possible to convert a real number

to the nearest integer by rounding in the following way:

integer = (int) (real + 0.5);

In this case we indicate that two real numbers are added and the result, which

will be a real number, is explicitly converted to an integer using typecasting.

3.2.3. Relational operators

We need to remember that in C there is no type of logical data corresponding

to "false" and "true". Therefore, any integer-compatible data will indicate

"false" if it is 0 and "true" if it is not 0.

Note

This may not happen with real-type data as we must remember that even infinitesimally
small numbers will be taken to be a "true" logical result.

As a consequence of this, relational operators return 0 to indicate that

the relation has not been fulfilled and a number other than 0 if it has.

The operators && and || only solve those expressions needed to determine,

respectively, if all cases are satisfied or if only some are. As such, && implies

that the expression which makes up the second argument will only be solved

if the first has produced a positive result. Similarly, || will only solve the second

argument if the first has given a "false" result.

Therefore:

(20 > 10) || (10.0 / 0.0 < 1.0)

GNUFDL • PID_00148431 23 An introduction to programming

will give a "true" result despite the fact that the second argument cannot be

solved (division by 0!).

In the above case the brackets are unnecessary as relational operators have

greater priority than logical ones. Even so, we recommend you use brackets

in expressions for greater clarity and to dispel any doubts on the order of the

operators the expression may contain.

3.2.4. Other operators

As we have mentioned, C was initially conceived for programming operating

systems and, as a consequence, it is closely related to the machine, this is

demonstrated by the existence of a group of operators designed to facilitate

the efficient translation of instructions to machine code.

Specifically, it has increment (++) and decrement (--) operators which apply

directly to variables with integer-compatible content. For example:

counter++; /* Is equivalent to: counter = counter + 1; */

--decrement; /* Is equivalent to: decrement = decrement –

1; */

Whether the operator is a prefix (preceding the variable) or a postfix depends

on whether it is an increment or a decrement: if it is a prefix it is executed

before using the content of the variable.

Example

See how the contents of the variables are modified in the following example:

a = 5; /* (a == 5) */
b = ++a; /* (a == 6) && (b == 6) */
c = b--; /* (c == 6) && (b == 5) */

It is also possible to carry out operations between bits. These operations are

performed between each of the bits of an integer-compatible number and

another. We can therefore perform an AND, an OR, an EX-OR (only one of the

two can be true) and a bit-by-bit logical negation between those of one data

string and those of another (a zero bit means "false" and a one means "true".)

The following symbols are used for bit-level operators:

• For logical AND: & (ampersand)

• For logical OR: | (vertical bar)

• For logical exclusive OR: ^ (circumflex accent)

• For logical negation or complement: ~ (tilde)

GNUFDL • PID_00148431 24 An introduction to programming

Despite the fact that these are valid operations between integer-compatible

data in the same way as logic operators are, we must remember that they do

not produce the same result. For example: (1 && 2) is true, but (1 &

2) is false, as it gives 0. To prove this we need to look at what is happening

on the bit level:

 1 == 0000 0000 0000 0001

 2 == 0000 0000 0000 0010

1 & 2 == 0000 0000 0000 0000

The list of C operators does not end there. We will look at some more later

but we will leave others alone.

3.3. Selection instructions

In the program execution model, instructions are executed in a sequence, one

after the other, in the same order as they appear in the code. It is true that

purely sequential execution does not permit very complicated programs to be

written, as the same operations will always be performed. We therefore need

instructions which allow us to control the execution flow of the program. In

other words, we need instructions which can alter the sequential order of their

execution.

In this section we will look at instructions in C which allow us to select

different sequences of instructions. These are briefly summarised in the

following table:

Table 5.

Instruction Meaning

 if(condition)
 instruction_yes ;
 else
 instruction_no ;

The condition must be an expression for which the solution is an integer-compatible data
type. If the result is not zero, the condition is considered to be fulfilled and it executes the
instruction_yes. If it is not, it executes the instruction_no. The else is optional.

 switch(expression) {
 case value_1 :
instructions
 case value_2 :
instructions
 default :
instructions
 } /* switch */

The evaluation of the expression must result in an integer-compatible data string. This result is
compared with the indicated values in each case and, if it is equal to one of them, all instructions are
executed from the first indicated for this case up to the end of the block of the switch. It is possible
to "break" this sequence by inserting an instruction called break; this ends the execution of the
instruction sequence. As an option you can also indicate a default case (default) which allows you
to specify which instructions will be executed if the result of the expression has not produced data
which coincides with any of the cases.

In the case of if it is possible to execute more than one instruction, whether

the condition is satisfied or not, by grouping the instructions into a block.

Instruction blocks are those written between braces:

 { instruction_1; instruction_2; ... instruction_N; }

GNUFDL • PID_00148431 25 An introduction to programming

In this sense we recommend that all conditional instructions include the

instructions to be executed in each case:

if(condition)

{ instructions }

else

{ instructions }

/* if */

This avoids confusing cases such as the following:

if(a > b)

 larger = a ;

 smaller = b ;

difference = larger - smaller;

In this case we assign b to smaller, regardless of the condition, so the only

instruction of the if is the assignment to larger.

As it can be seen, instructions which belong to the same block always start in

the same column. To facilitate the identification of blocks they should have an

indentation to the right with respect to the initial column of the instruction

governing them (in this case: if, switch and case).

For greater convenience each block of instructions should be indented

to the right with respect to the instruction determining its execution.

Given the fact that the assignment of one value or another to a variable often

depends on a condition, it is possible to use a conditional assignment operator

instead of an if instruction in these cases:

condition ? expression_if_true : expression_if_false

So, instead of:

if(condition) var = expression_if_true;

else var = expression_if_false;

We can write:

var = condition ? expression_if_true : expression_if_false;

What is more, we can use this operator in any expression. For example:

GNUFDL • PID_00148431 26 An introduction to programming

cost = (km>km_contract? km-km_contract : 0) * COST_KM;

It is preferable to limit the use of the conditional operator to cases in

which it facilitates reading.

3.4. Standard input and output functions

The C language only has flow control operators and instructions. Any other

operation required must be programmed, or we could also use programs from

our program library.

Note

We have already seen how a function is no more than a series of instructions which
are executed as a unit to perform a specific task. To get an idea of this we can use
mathematical functions which perform some operation using the arguments given and
which return a solution.

The C language has a wide range of standard functions among which are the

data input and output functions that we will look at in this section.

The C compiler needs to know (name and data type of the arguments and

the value returned) which functions our program will use to be able to

generate the executable code correctly. As such, we need to include header

files containing the declarations in the code of our program. In this case:

#include <stdio.h>

3.4.1. Standard output functions

The standard output is the place where the resulting data is shown (messages,

results etc.) by the program being executed. This will normally be the

computer screen or a window on the screen. In the second case, the window

will be associated with the program.

printf("format" [, list_of_fields])

This function will print the text contained in "format" on the screen (the

standard output). In this text special characters, which must be preceded by a

back slash (\) will be replaced by their ASCII meaning. Furthermore, the field

specifiers, which are preceded by a %, are replaced by the value resulting from

the corresponding expression (normally the content of a variable) indicated

in the list of fields. This value is printed using the format indicated by the

specifier.

The following table shows the relationship between the format string symbols

and the ASCII characters. n is used to indicate a digit of a number.

GNUFDL • PID_00148431 27 An introduction to programming

Table 6.

Characters ASCII character

\n new line (line feed)

\f form feed (page break)

\b backspace

\t tab

\nnn ASCII number nnn

\0nnn ASCII number nnn (in octal)

\0Xnn ASCII number nn (in hexadecimal)

\\ backslash

Field specifiers have the following format:

[%[-][+][width[.precision]]data_type

The square brackets indicate that the element is optional. The minus sign

indicates alignment to the right which is often used when printing numbers.

Furthermore, if we specify the plus sign, the numbers will be preceded by

their sign, be it positive or negative. Width is used to indicate the minimum

number of characters used to display the field and, in the specific case of real

numbers, you can also specify the number of decimal points to be displayed

using precision. It is obligatory to include the data-type to be displayed, this

can be one of the following:

Table 7.

Integers Real numbers Other

%d In decimal %f In floating point %c Character

%i In decimal %e %s Character string

%u In decimal without a
sign

%% The % sign

%o In octal without a sign

In exponential format: [+/-]0.000e[+/-]000 with
lower or upper case e (%E)

%x In hexadecimal %g In e, f, or d format.

(incomplete list)

Example

printf("The amount of invoice number: %5d", inv_num);
printf("for Mr/Ms. %s is %.2f_\n", client, amount);

For numeric types it is possible to prefix the type indicator with an "l" in the same way
as with the declaration of types with long. In this case, the double type must be treated
as a "long float" and therefore as "%lf".

 putchar(character)

GNUFDL • PID_00148431 28 An introduction to programming

Shows the indicated character on the standard output.

 puts("character string")

Example

putchar('\n');

Shows a character string on the standard output.

3.4.2. Standard input functions

These obtain data from the standard input which will usually be the keyboard.

They return an additional value which reports the result of the reading

process. The value returned does not have to be used if it is not needed, we

will usually know that data input can be performed without problems.

 scanf("format" [, list_of_&variables])

Example

puts("Hello world!\n"
);

Reads from the keyboard buffer and transfers the content to the variables it has

as arguments. Reading is performed in accordance with the indicated format

in a similar way as the specification of fields used for printf.

In order to be able to deposit the data in the indicated variables, this function

requires that the arguments on the variable list are the memory addresses

at which they are to be found. For this reason we need to use the operator

"address of" (&). In this way, scanf directly deposits the information it has

read in the corresponding memory location, naturally the affected variable

will be modified to show the new value.

It is important to remember that if we specify less arguments than field

specifiers in the format the results may be unpredictable, as the function

will change the content of some memory locations in a random way.

Example

scanf("%d", &num_articles);

In the above example, scanf reads the characters which have been typed

to convert them to an integer (presumably). The value obtained is placed

in the address indicated by its argument, the one that is in the variable

num_articles. Scanning characters from the memory buffer is stopped when

the character read does not correspond to a possible character of the specified

format. The character will be returned to the buffer for posterior reading.

For the input shown in the following example the function stops reading

after the blank space separating the typed numbers. This and the rest of the

characters stay in the buffer for posterior readings.

Note

The keyboard buffer is
the memory which stores
everything which is typed.

GNUFDL • PID_00148431 29 An introduction to programming

Figure 1.

The scanf function returns the number of pieces of data which have been

correctly read. I.e. all those for which compatible text has been found with a

representation of its type.

 getchar()

Returns a character read by the standard input (usually the keyboard buffer).

If no character can be read it returns the character EOF. This constant is

defined in stdio.h and, as such, can be used to determine if the reading was

successful, whether an error occurred or whether it reached the end of the

input data.

 gets(character_string)

Example

option = getchar();

Reads a series of characters from the standard input until it comes to an end

of line ('\n'). This last character is read but it is not stored in the character

string of the argument.

If nothing is read it returns NULL, which is a constant defined in stdio.h for

which the value is 0.

Example

gets(user_name);

GNUFDL • PID_00148431 30 An introduction to programming

Summary

In this unit we have looked at the execution procedure for programs on a

computer. The unit in charge of processing information (central processing

unit or CPU) reads an instruction from the memory and executes it. This

operation involves a change in the state of the environment of the program,

the content of one or more of its variables and the address of the next

instruction.

This execution model for instructions, which is used by most real processors, is

replicated in the imperative programming paradigm for high-level languages.

We have seen how this is true for the C programming language in particular.

For this reason we have reviewed the instructions in this language which allow

us to modify the environment by changing data and changing the sequential

order of the instructions in the memory.

The changes which affect program data are, in fact, assignments of the

variables they contain. We have seen that variables are spaces in the memory

of the computer which can be referenced using the name which has been

declared and can be found internally using the address of the first memory

word they occupy.

We have looked at the way in which expressions are resolved using priorities

for operators and how we can organise the code better using brackets. We

have mentioned the convenience of using explicit typecasting to prevent

the incorrect use of automatic data type promotion. Promotion must be

performed so that operators always work with operands of the same type and

which have the greatest range.

In terms of execution flow control, which normally follows the order in

which the instructions are found in the memory, we have looked at the basic

instructions used for selecting sequences of instructions: The instruction if

and the instruction switch.

Using these explanations we have introduced a special way of considering

logic data ("false" and "true") in C. This means that any piece of data can

be used as a logic value at any time. In relation to this subject, we have

mentioned the special way in which the AND and OR logic operators are

solved, in that the right-hand expression is not solved if the logic value result

can be determined from the first argument (that produced by the preceding

expression).

GNUFDL • PID_00148431 31 An introduction to programming

In the last section we reviewed the basic standard data input and output

functions used to construct programs to test not only the explicit concepts

and elements of C, but also those of the GNU/C development environment.

This allows us to see how compilation and program links work in practice.

The task of the C compiler is to translate the C program into a machine code

program. The linker is there to add the library functions used in the program

to this version of the code. This is the process used to obtain an executable

code.

GNUFDL • PID_00148431 33 An introduction to programming

Self-evaluation

1. Edit, compile (and link), execute and check the operation of the following program:

2. Write a program which calculates the total given a certain VAT rate applied to a certain
amount of Euros.

3. Write a program which calculates the cost of 1 kg or 1l of a product if we know the price
on the package and the amount of the product it contains.

4. Modify the above program so that it calculates the price of the product for the desired
amount, this should also be able to be input.

5. Write a program which gives the change due, knowing the cost of the product and the
amount paid. The program must indicate if the amount paid is insufficient.

6. Write a program which, given the approximate number of litres in the fuel tank of a car,
the consumption per 100 km and a certain distance in kilometres, will calculate if the car is
able to complete the journey. If it is not, the program should indicate the number of extra
litres needed.

GNUFDL • PID_00148431 34 An introduction to programming

Answer key

1. Follow the steps indicated. As an example, if the file is called "sum.c", you will need to
do the following after creating it:

2.

3.

GNUFDL • PID_00148431 35 An introduction to programming

4.

5.

6.

GNUFDL • PID_00148431 36 An introduction to programming

The structured
programming

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Josep Anton Pérez López
Lluís Ribas i Xirgo

PID_00148429

GNUFDL • PID_00148429 The structured programming

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148429 The structured programming

Index

Introduction... 5

1. Principles of structured programming....................................... 9

2. Iterative instructions.. 10

3. Processing data sequences... 13

3.1. Algorithmic schemes: run through and searching 13

3.1.1. Run-through .. 13

3.1.2. Search ... 16

3.2. Filters and pipes .. 18

4. Debugging programs... 21

5. Data structures... 24

6. Matrices... 25

6.1. Declaration .. 25

6.2. Reference ... 27

6.3. Examples .. 28

7. Heterogeneous structures.. 31

7.1. Tuples ... 31

7.1.1. Declaration ... 31

7.1.2. Reference .. 32

7.2. Multiple type variables ... 33

8. Abstract data types... 35

8.1. Defining abstract data types ... 35

8.2. Enumerated types .. 36

8.3. Example ... 37

9. Files.. 39

9.1. Byte stream files .. 39

9.2. Standard file functions .. 40

9.2.1. Standard data output functions (write) for files 41

9.2.2. Standard data output functions (write) for files 42

9.2.3. Standard stream file position functions 43

9.2.4. Input/output functions for standard devices 43

9.3. Example ... 44

GNUFDL • PID_00148429 The structured programming

10. Principles of modular programming... 46

11. Functions.. 47

11.1. Declaration and definition ... 47

11.1.2. Declarations ... 47

11.1.3. Definitions ... 48

11.1.4. Calls .. 48

11.12.Scope of variables .. 50

11.3. Parameters by value and by reference .. 52

11.4. Example ... 54

12. C preprocessor macros.. 56

Summary.. 57

Self-evaluation.. 59

Answer key.. 62

GNUFDL • PID_00148429 5 The structured programming

Introduction

An effective program is one which produces a legible code and which can be

updated within a reasonable development time, it must also run efficiently.

Fortunately the compilers and interpreters of program code written in

high-level languages will optimise programs to reduce the cost of execution.

One example of this is that many compilers have the ability to use the same

memory space for several variables, as long as they are not used simultaneously

of course. In addition to this and the other memory optimisation functions,

they can also improve the executable code to reduce the final execution time.

For example, they can take advantage of common factors in expressions to

avoid repeating calculations.

All this allows programmers to concentrate on the task of preparing legible

programs which are easy to maintain. For example, giving variables long

names poses no problems as the length of the name is not reflected on the

compiled code. Similarly, it is not logical to use programming tricks which

increase the efficiency of execution if these reduce the legibility of the source

code. In general, programming tricks do not usually improve the execution

cost significantly and will often make the program more difficult to maintain

and may make it more dependent on a specific development environment or

a particular machine.

This unit will therefore focus on how to organise the source code of a program.

The correct organisation of programs implies a significant improvement in

legibility and, as a consequence, a reduction in programming errors and easier

maintenance and updating later on. What is more, this will make it easier to

use parts of the program in other programs.

The first section will deal with structured programming. This programming

paradigm is based on imperative programming, this imposes restrictions on

the jumps which can be made during the execution of a program.

These restrictions can improve the legibility of the source code allowing

readers to precisely determine the execution flow of the instructions.

In programming it is very common to find blocks of instructions which must

be executed repetitively. As such it is necessary to understand how to set out

the code in a structured way. Generally speaking, these cases derive from the

need to process data. In the first section we will not just look at structured

Note

A jump is a change in the
order of execution of the
instructions meaning the
next instruction is not the
one which comes after the
instruction being executed at
the time.

GNUFDL • PID_00148429 6 The structured programming

programming but also algorithmic structures which help us to write programs

which handle a series of data strings and, of course, their corresponding

instructions in C.

Even though structured programming is designed to reduce programming

errors, these can never be eliminated completely. One section is therefore

dedicated to the correction of programming errors and the tools that can help

us to do this: debuggers.

The second section revolves around the logical organisation of program data.

We must bear in mind that the information processed by computers and the

results are often made up of several types of data. This data can in turn be

composed of other simpler types.

Programming languages will support a certain amount of basic data

types, meaning that they include mechanisms (declarations, operations and

instructions) to allow the source code to use them.

As such, the information handled by a program must be represented in

terms of variables which contain fundamental data types supported by the

programming language. However, it is convenient to group together sets of

data where the information they contain is closely related. For example:

handling the number of days in each month of the year, the day, month and

year of a date or a list of the holidays in a year as single units.

In the second section we therefore deal with those aspects of programming

which improve the structural layout of data. In particular we will look at the

existing structure classes and how to use variables containing structured data.

We will also see how the definition of data types from other types, structured

or not, benefits the program. Given that these new types are not recognised

by the programming language, they are called abstract data types.

The final section introduces the principles of modular programming, this

is fundemental for understanding programming in C. In this programming

model, the source code is divided into small structured programs which

perform very specific tasks within the global program. This therefore divides

the program into sub-programs which are much easier to read and understand.

These sub-programs are called modules, which is where we get the name for

this programming technique.

In C, all modules are functions which usually perform very specific actions

on a few variables within the program. What is more, each function is usually

specialised to operate on a specific type of data.

Note

An abstract data type is one
which represents information
not supported by the
programming language used.
This can occur if a certain
data type is supported by one
language but not by another,
meaning they must be treated
as being abstract.

GNUFDL • PID_00148429 7 The structured programming

Given the importance of this subject, we will take a closer look at the

declaration, definition and use of functions in C, especially the mechanisms

used during the execution of programs to provide and obtain information on

the functions they include.

Lastly, we will look at C preprocessor macros. These have a similar appearance

to functions in C which can lead to confusion in the interpretation of the

source code of the program that uses them.

The main purpose of this unit is that the reader learns to correctly organise the

source code of a program as this is the fundamental indicator of the quality

of the programming. More specifically, in this unit we are aiming to achieve

the following goals:

1) To understand what structured programming is.

2) To learn how to correctly apply algorithmic layouts to handle sequences

of data.

3) To identify the systems to be used for debugging errors in a program.

4) To learn about the basic data structures and how to use them.

5) To understand what modular programming is.

6) To understand the mechanics of the execution of functions in C.

GNUFDL • PID_00148429 9 The structured programming

1. Principles of structured programming.

Structured programming is a technique which arose from the analysis of the

flow control structures which underlie all computer programs. This study

revealed that it is possible to construct any flow control structure from three

basic structures: sequential, conditional and iterative.

Structured programming consists of organising the code in such a way

the flow of the execution of instructions is obvious to readers.

One theory formulated in 1966 by Böhm and Jacopini states that all

"individual programs" should have a single input point and a single output

point so that all instructions between these points are executable and there

are no infinite loops.

The combination of these provide the groundwork for the construction of

structured programs in which the flow control structures can be written using

a very small number of instructions.

In fact, the sequential structure does not require any additional instructions

as programs normally execute themselves by performing the instructions in

the order in which they appear in the source code.

In the previous unit we looked at the if instruction which allows blocks of

instructions to be executed conditionally. We must bear in mind that, for it to

be an actual program, all of the instruction blocks must be able to be executed.

Iterative flow control structures will be dealt with in the following section. It is

worth noting that, in terms of structured programming, we only need a single

iterative flow control structure. This can be used to construct all the others.

Additional reading

E.W.�Dijkstra (1968). The
goto statement considered
harmful

E.W.�Dijkstra (1970). Notes
on structured programming

GNUFDL • PID_00148429 10 The structured programming

2. Iterative instructions

Iterative instructions are flow control instructions which allow us to repeat the

execution of a block of instructions. The following table shows those which

are present in C:

Table 8.

instruction Meaning

 while(condition) {
instructions
 } /* while */

This executes all the instructions in the looped block as long as the expression of the
condition results in an integer-compatible data type with a value other than zero, meaning, as
long as the condition is satisfied. The instructions could not be executed ever.

 do {
instructions
 } while (condition);

Similarly to the whileloop, this executes all the instructions in the looped block as long as the
expression of the condition is satisfied. The difference lies in the fact that the instructions
are executed at least one time (checking the condition for the possible repetition of the instructions
is performed at the end of the block).

 for(
 initialisation ;
 condition ;
 continuation
) {
instructions
 } /* for */

This behaves in a similar way to the while loop: as long as the condition is satisfied the instruction
block is executed. In this case however, it is possible to indicate which instruction or instructions
are to be executed before the start of the loop (initialisation) and which instruction or
instructions are to be executed at the end of execution of the instructions (continuation).

As can be seen, all the loops can be reduced to a "while" loop. Despite this,

there are cases in which it is more logical to use one of the variations.

We must remember that the flow control structure of a program in a high-level

language does not reflect what the processor is actually doing (conditional

and unconditional jumps) in the aspect of the flow control of the execution of

the program. Even so, the C language has instructions which approximate the

machine, such as the forced loop break (break;) and forced loop continuation

(continue;). We also have an instruction for an unconditional jump (goto)

which should never be used in a high-level program.

The programming of a loop normally implies determining the block of

instructions to be repeated and, above all, under what conditions it is to

be executed. As such, it is very important to remember that the condition

governing the loop determines the validity of the repetition and, especially,

the end of the loop when it is not satisfied. Note that there should be a case

in which the solution of the condition expression results in a "false" value. If

this is not so, the loop will repeat itself indefinitely (what we call an "infinite

loop").

GNUFDL • PID_00148429 11 The structured programming

Having determined the iterative block and the condition governing it, we also

need to program the possible preparation of the environment before the loop

and instructions needed on its conclusion: its initialisation and end.

The iterative instruction should be selected based on the condition

governing the cycle and its possible initialisation.

In cases where there is a possibility that the instructions of the loop are

not executed we should use while. For example, to calculate the number of

divisors of a given positive integer:

/* ... */

/* Initialisation: ___________________________*/

divisor = 1; /* Number to be divided */

ndiv = 0; /* Number of divisors */

/* Loop: ____________________________________*/

while(divisor < number) {

 if(number % divisor == 0) ndiv = ndiv + 1;

 divisor = divisor +1;

} /* while */

/* End: _____________________________*/

if(number > 0) ndiv = ndiv + 1;

/* ... */

Sometimes the condition governing the loop will depend on a variable which

can be used as a repetition counter, meaning that its content reflects the

number of iterations performed. In these cases we can consider using a

for. This could be specifically interpreted as "iterating the following set of

instructions for all the values of a counter between given initial and final

values". The following example demonstrates this interpretation in C code:

/* ... */

unsigned int counter;

/* ... */

for(counter = START ;

 counter <= LAST ;

 counter = counter + INCREMENT

) {

instructions

} /* for */

/* ... */

Despite the fact that the above example is very common, the variable acting

as the counter does not need to be incremented, nor does this need to be done

by a specific step, nor does the condition only need to check that the last

GNUFDL • PID_00148429 12 The structured programming

value has been reached or that it is an additional variable which is not used

in the body of instructions to be iterated. It would therefore be very useful

if it was a variable whose content was modified on each iteration and that it

could therefore be used as a counter.

We recommend avoiding the use of for in cases in which there is no counter.

Instead it is much better to use while.

In some cases a large part of the initialisation will coincide with the body of

the loop, or we need to demonstrate that the loop will be executed at least

once. If this is the case, it is better to use a do...while. As an example we

will look at the code of a program which adds up various amounts until the

amount read is equal to zero:

/* ... */

float total, amount;

/* ... */

total = 0.00;

printf("SUM");

do {

 printf(" + ");

 scanf("%f", &amount);

 total = total + amount;

} while(amount != 0.00);

printf(" = %.2f", total);

/* ... */

The real numerical constant 0.00 is used to indicate that only two fractional

digits are significant as otherwise it would be the same thing to write 0.0 or

even 0 (in the last case, the whole number would be converted into a real

number before assignment).

In all cases the aim is always to produce a code which is understandable. The

selection of the type of iterative instruction also depends on the stylistic taste

of the programmer and his/her experience and it will not affect the efficiency

of the program in terms of execution cost.

GNUFDL • PID_00148429 13 The structured programming

3. Processing data sequences

Much of the information handled will consist of sequences of data which can

be either implicit or explicit.

Example

In the first case we are processing the information from a series of data coming from the
standard input device.

An example of the second would be the processing of a series of values acquired by the
same variable.

In both cases the treatment of the sequence can be observed in the program

code as it must be performed by an iterative instruction. This loop usually

corresponds to a specific algorithm. In the following sections we will look at

the two fundamental layouts for the treatment of data sequences.

3.1. Algorithmic schemes: run through and searching

Algorithmic schemes for processing data sequences are patterns which are

repeated frequently in many algorithms. We therefore have equivalent

patterns in programming languages such as C. In this section we will look at

some of the basic patterns for the treatment of sequences: the run-through

and the search.

3.1.1. Run-through

Running through a sequence implies that all the members of the sequence

are treated in the same way.

In other words, all of the elements of the sequence are treated, from the first

to the last.

If the number of elements making up the series is known a priori and the

initialisation for the loop is very simple, it may be appropriate to use a for.

If not then the while or do...while loops are more appropriate, as long as

we know that there will be at least one element in the data sequence.

The algorithmic scheme of running through a sequence in its version for C

will be as shown below:

/* initialisation for sequence processing */

/* (may include treatment of the first element) */

while(! /* end of sequence */) {

GNUFDL • PID_00148429 14 The structured programming

 /* treat element */

 /* advance through sequence */

} /* while */

/* end of sequence processing */

/* (can include treatment of the last element) */

The above pattern can be performed with other iterative instructions if

circumstances require it.

To illustrate several examples of run-through patterns let us suppose we wish

to find the average temperature at a weather station. To do this we will write

a program and supply it with the temperatures recorded at regular intervals

by the weather station's thermometer, this should then calculate the average

of the values entered.

The body of the loop will therefore simply sum the temperatures (treatment

of the element) and then read a new temperature (advancing the sequence):

/* ... */

accumulated = accumulated + temperature;

amount = amount + 1;

scanf("%f", &temperature);

/* ... */

In this iterative block we can observe that temperature should have a certain

value before it can be summed in the accumulated variable, which in turn

also needs to be initialised. Similarly, amount must be initialised to zero.

Once done, the initialisation and sequence preparation stage is complete:

/* ... */

unsigned int number;

float accumulated;

/* ... */

number = 0;

accumulated = 0.00;

scanf("%f", &temperature);

/* loop ... */

We still need to resolve the problem of establishing the condition for ending

the data sequence. The data sequence could be given an end marker, or its

length could already be known.

GNUFDL • PID_00148429 15 The structured programming

In the first of these cases, the end marker should be a special element of the

sequence which has a different value from any of the other data. As we know

that a temperature reading can never be below –273.16 ºC (especially not an

ambient temperature), we could use this value as the end marker. For clarity

this marker will be defined as a constant in the preprocessor.

#define MIN_TEMP -273.16

When it is found it should not be processed but should end the run-through

and cause the average to be calculated:

/* ... */

float average;

/* ... end of loop */

if(number > 0) {

 average = accumulated / (float) number;

} else {

 average = MIN_TEMP;

} /* if */

/* ... */

Before calculating the average it checks that there is data present. If there

is not, the final marker temperature is assigned to average. With everything

included, the final code would appear as follows:

/* ... */

number = 0;

accumulated = 0.00;

scanf("%f", &temperature);

while(! (temperature == MIN_TEMP)) {

 accumulated = accumulated + temperature;

 amount = amount + 1;

 scanf("%f", &temperature);

} /* while */

if(number > 0) {

 average = accumulated / (float) number;

} else {

 average = MIN_TEMP;

} /* if */

/* ... */

If the end marker of the sequence is provided separately, the iterative

instruction should be a do..while. In this case, the input sequence is

supposed to be made up of elements with two pieces of data: the temperature

and an integer value taken as a logical value indicating if it is the last element:

/* ... */

GNUFDL • PID_00148429 16 The structured programming

number = 0;

accumulated = 0.00;

do {

 scanf("%f", &temperature);

 accumulated = accumulated + temperature;

 amount = amount + 1;

 scanf("%u", &the_last);

} while(! the_last);

if(number > 0) {

 average = accumulated / (float) number;

} else {

 average = MIN_TEMP;

} /* if */

/* ... */

If we already know the number of temperatures (NTEMP) which have been

recorded we only need to use a for:

/* ... */

accumulated = 0.00;

for(num = 1; num <= NTEMP; num = num + 1) {

 scanf("%f", &temperature);

 accumulated = accumulated + temperature;

} /* for */

average = accumulated / (float) NTEMP;

/* ... */

3.1.2. Search

Searches are mostly partial run-throughs of sequences of input data. They run

through the sequence of data until they find the one satisfying a certain

condition. Obviously if they do not find an element satisfying the condition

they will perform a complete run-through of the sequence.

In general, a search consists of running through a sequence of data

until a certain condition is satisfied or it reaches the last element in the

sequence. The condition does not need to affect only one element.

Following the above example, it is possible to perform a search which stops the

run-through when the progressive average remains within ±1 ºC or the detected

temperature for at least 10 records.

GNUFDL • PID_00148429 17 The structured programming

This algorithmic scheme is very similar to the run-through except that it

incorporates a search condition and that it will need to check if the search

condition has been satisfied or not at the end of the loop:

/* initialisation for sequence processing */

/* (may include treatment of the first element) */

found = FALSE;

while(! /* end of sequence */ && !found) {

 /* treat element */

 if(/* found condition */) {

 found = TRUE;

 } else {

 /* advance through sequence */

 } /* if */

} /* while */

/* end of sequence processing */

if(found) {

 /* instructions */

} else {

 /* instructions */

} /* if */

In this scheme, the constants FALSE and TRUE are supposed to have been

defined in the following way:

#define FALSE 0

#define TRUE 1

If we apply the above template to search for a stable progressive average, the

source code will be as follows:

/* ... */

number = 0;

accumulated = 0.00;

scanf("%f", &temperature);

sequential = 0;

found = FALSE;

while(! (temperature == MIN_TEMP) && ! found) {

 accumulated = accumulated + temperature;

 amount = amount + 1;

 average = accumulated / (float) number;

 if(average<=temperature+1.0 || temperature-1.0<=average) {

 sequential = sequential +1;

 } else {

 sequential = 0;

 } /* if */

 if(sequential == 10) {

GNUFDL • PID_00148429 18 The structured programming

 found = TRUE;

 } else {

 scanf("%f", &tempera

 } /* if */

} /* while */

/* ... */

In search schemes it is not usually appropriate to use a for, as this is usually

an iterative instruction which uses a counter to take a series of values from

the first to the last. This means that it performs a run-through of the implicit

sequence of all the values taken by the counting variable.

3.2. Filters and pipes

Filters are programs which generate a sequence of data from a run-through

of a sequence of input data. Usually the output data sequence contains the

processed data from the input.

The name filter is used because it is very common that the output sequence is

simply a data sequence which is very similar to the input sequence but where

some of the elements have been removed.

For example, a filter would be a program whose output is the partial sums of

the input numbers:

#include <stdio.h>

main()

{

 float sum, summing;

 sum = 0.00;

 while(scanf("%f", &summing) == 1) {

 sum = sum + summing;

 printf("%.2f ", sum);

 } /* while */

} /* main */

Another more useful filter could be a program which replaces tabs by the

number of blank spaces required to reach the next tab column:

#include <stdio.h>

#define TAB 8

main()

{

 char character;

 unsigned short position, tab;

 position = 0;

 character = getchar();

GNUFDL • PID_00148429 19 The structured programming

 while(character != EOF) {

 switch(character) {

 case '\t':/* advance to the next column */

 for(tab = position;

 tab < TAB;

 tab = tab + 1) {

 putchar(' ');

 } /* for */

 position = 0;

 break;

 case '\n': /* new line means column 0 */

 putchar(character);

 position = 0;

 break;

 default:

 putchar(character);

 position = (position + 1) % TAB;

 } /* switch */

 character = getchar();

 } /* while */

} /* main */

These small programs can be useful either by themselves or combined with

others. As such, the output sequence of one can be used as the input sequence

for another, making up what we call a pipe the visual idea is that we enter

data into one end of the pipe and we get another flow of processed data at

the other end. The pipe can include one or more filters which retain and/or

transform the data.

Example

A filter can be used to convert a sequence of input data consisting of three numbers
(item code, price and amount) to an output data sequence with two numbers (code and
amount), the next one could be a sum filter to produce the total amount.

To do this we will need the help of the operating system. It is not necessary for

the data to be input using the keyboard nor is it necessary for it to be output

using the screen, even though they are the standard input and output devices.

In Linux (and other OS types) we can redirect the standard input and output

of data using the redirection commands. In this way we can make a specific

file the standard input and we can store the output data in another file which

is used as the standard output.

In the above example we can suppose that there is a file (ticket.dat)

containing the input data and we wish to obtain the total of the purchase. To

do this we can use a filter to calculate the partial amounts, whose output will

be the input of another which produces the total.

GNUFDL • PID_00148429 20 The structured programming

In order to apply the first filter we will need to execute the corresponding

program (which we will call calculate_amounts) redirecting the standard

input to the file ticket.dat, and the output to the file amounts.dat:

$ calculate_amounts <ticket.dat >amounts.dat

Thus, amounts.dat will collect the sequence of data pairs (item code

and amount) which the program has generated at the standard output.

Redirections are determined using the "less than" symbol for the standard

input and the "more than" symbol for the standard output.

If we want to calculate the amounts of other purchases in order to calculate

the sum, we would need to add all of the partial amounts of all of the purchase

tickets to amounts.dat . This can be done using a double output redirection

operator, the meaning of this could be "add to the standard output file of the

program":

$ calculate_amounts <other_ticket.dat >>amounts.dat

Once we have collected all the partial amounts we want to add up, we can call

up the program which calculates the sum:

$ sum <amounts.dat

If we are only interested in the sum of one purchase ticket we can build a pipe

in which the output of the calculation for the partial amounts is the input

for that of the sum:

$ calculate_amounts <ticket.dat | sum

As we can see in the above command, the pipe has been assembled with

the pipe operator represented by the vertical bar symbol. The data from the

standard output of the execution of that preceding it transmits them to the

standard input of the program coming after.

GNUFDL • PID_00148429 21 The structured programming

4. Debugging programs

The removal of errors from a program is known as debugging. Errors can

be caused by both the programming and by the algorithm itself. Debugging

can therefore involve modifications to the algorithm causing the problem.

When an error is caused by the incorrect programming of an algorithm this

is known as a logic�error. If the error is caused by a violation of the rules of

the programming error it is called a syntax�error (although errors can also be

lexical or semantic in nature).

Note

Debugging is the term used in English to refer to the removal of computer programming
errors. This verb can be translated as "bug removal" and has its origin in a 1945 report
on a test of a Mark II computer performed at Harvard University. The report showed that
a moth was found in one of the relays causing it to malfunction. To prove that the bug
had been removed (and the error resolved) the moth was included in the actual report.
It was attached using adhesive tape and a footnote was added saying "first case of a moth
found". This was also the first appearance of the verb to debug which is still used today.

Syntax errors are detected by the compiler as they prevent an executable code

being generated. If the compiler can still generate the code despite the possible

existence of an error it will usually generate a warning.

For example, it may be that an if expression contains an assignment operator,

it is usually a confusion of assignment and comparison operators:

/* ... */

if(a = 5) b = 6;

/* ... */

The above code also shows a programming error given that the instruction

appears to indicate that b may not be 6. If we look at the if condition, it

assigns the value of 5 to the variable a, the result being equal to the assigned

value. As the value 5 is not 0, the result is always positive and consequently

b always takes the value 6.

For this reason it is highly recommendable that the compiler gives us all the

warnings it can. It should be executed using the following argument:

$ gcc -Wall -or program program.c

The argument –Wall indicates that a warning will be given in most cases in

which there may be a logic error. Despite the fact that the argument appears

to indicate that it will warn us in all situations, there are still some situations

in which it will not.

GNUFDL • PID_00148429 22 The structured programming

The most difficult errors are logic errors which can escape detection

even by the compiler. These errors are caused by incorrect programming

of the corresponding algorithm, meaning that the algorithm itself is

incorrect. Once an error has been detected it must be located in the

source code.

In order to locate an error we need to know under what condition or state of

the environment they occur. As such, we need to find out which values of the

variables lead the execution flow of the program to the instruction in which

the error occurs.

Unfortunately, errors usually present themselves in a later state to the one in

which they actually caused a fault in the behaviour of the program. To detect

a fault it is therefore necessary to observe the state of the program at all times

and to follow its evolution until the error presents itself.

To increase the intelligibility of a program, we usually insert text printings

(also called notes) into the code to show us the content of certain variables.

This procedure implies the modification of the program each time new notes

are added, those which are no longer needed can be removed or changed.

However, in order to improve error localisation we need to control the flow of

execution. The controllability implies the ability to modify the content of the

variables and to choose between different execution flows. In order to achieve

a certain level of control we need to make significant changes to the program

under examination.

Instead of doing all the above steps, it is far easier to use a tool which allows us

to observe and control the execution of programs for debugging. These tools

are called debuggers.

For the debugger to be able to do its job, we need to compile programs in such

a way that the resulting code includes information relating to the source code.

Therefore, to debug a program we need to compile it using the option –g:

$ gcc -Wall -or program -g program.c

In GNU/C there is a debugger called gdb , this allows us to execute a program,

to stop it under certain conditions, to examine the state of the program once

stopped and, lastly, make changes to find possible solutions.

The debugger is invoked in the following way:

$ gdb program

GNUFDL • PID_00148429 23 The structured programming

The following table shows some of the commands we can use with GDB:

Table 8.

Command Action

run Executes the program from the first instruction. The program will only stop at a breakpoint, when the
debugger receives a stop warning (using the Ctrl and the C key simultaneously) or when it is waiting
for data to be input.

break line_num This establishes a breakpoint before the first instruction found at the line indicated in the source code.
If the line number is omitted it will be established at the first instruction of the current line, meaning
the line at which it stopped.

clear line_num This removes the breakpoint established at the indicated line or at the current line if the number is
omitted.

c Continues execution after a stoppage.

next Executes the following instruction and stops.

print expression Prints the result of solving the indicated expression. The expression can be a variable and the result of
its resolution, its content.

help Shows the list of commands.

quit Exits the GDB

Breakpoints are flags in the executable code which allow the debugger to know

if it should stop the execution of the program or if it should continue to

execute it. These flags can be set or removed by using the debugger itself. This

allows you to execute portions of the code as a unit.

It can be particularly useful to insert a breakpoint in main before executing it,

this will make it stop at the first instruction and allow us to track execution

better. To do this we use the command break main, as it is possible to indicate

function names as breakpoints.

It is always much more practical to use a graphics environment in which

the source code can be seen at the same time as the output of the program

being executed. We could use DDD to do this for example (Data Display

Debugger) or the XXGDB. Both environments use the GDB as the debugger and

therefore have the same options. However it is easier to use because most of

the commands are visible and we also have the drop-down menus available.

GNUFDL • PID_00148429 24 The structured programming

5. Data structures

The basic data types (real and integer-compatible) can be grouped into

homogeneous and heterogeneous structures to facilitate (and clarify) access

to elements within a program.

A homogenous structure is one in which all the data is of the same type,

a heterogeneous one may be made up of data of different types.

In the following sections we will review the main data structures in C,

although they exist in all structured programming languages. Each section

is organised in such a way to allow us to see how to perform the following

operations on the variables:

• Declare them so that the compiler can reserve the necessary space.

• Initialise them so that the compiler gives them an initial content (which

can be changed) in the resulting executable program.

• Reference them so that their content can be accessed, both for modifying

and reading them.

As it is obligatory to precede the variable by its type, it is recommendable to

identify the types of structured data with a type name. These new data types

are known as abstract data types. The last section will deal with these.

GNUFDL • PID_00148429 25 The structured programming

6. Matrices

Matrices are data structures of a fixed size. This means they always represent

a piece of information using a certain amount of data. These are also called

arrays, tables (for those with one or two dimensions) or vectors (if they only

have one dimension). In the particular case of character vectors, they take the

name character�strings or strings.

6.1. Declaration

We will now look at four declarations of different matrices and a scheme for

their distribution in the memory of the computer. The number of bytes in each

division will depend on the data type used by the matrix. The scheme will

include the name of each piece of data within the matrix, this will distinguish

the common name of the matrix from the identifier of the particular piece of

data, which will correspond to the position of the element within the matrix.

It is very important to bear in mind that in C positions are always numbered

starting from 0.

Figure 2.

GNUFDL • PID_00148429 26 The structured programming

This shows the declarations of the variables which lead to the distribution in

memory shown in Fig. 2:

 int vector[4];

 char string[20];

 unsigned short table[10];

 double matrix[3][3];

The first of these declarations prepares a vector of 4 signed integers; the

second, a string of 20 characters; the third, a table of 10 positive integers

and the last reserves a space for a 3 x 3 matrix of real numbers with double

precision.

Note

The matrix is stored in memory by rows, meaning the first row appears first followed by
the second and so on up to the last.

If we need to declare a matrix with a higher number of dimensions, we just need to
include its size in square brackets between the name of the structure and the semi-colon.

As we have already mentioned, character strings are in fact just

single-dimensional matrices in C. This means that they have a maximum

length fixed by the space reserved in the corresponding vector. Even so,

character strings can vary in length and an end flag is used to do this. In this

case it will be the NULL character in ASCII code, whose numerical value is 0.

In the above example, the string can contain any text up to 19 characters in

length, since we need to make sure that the last character is the end of string

(\0').

In all cases, and especially when we are dealing with variables which must

contain constant values, we can give each of the elements they contain an

initial value.

We need to remember that matrices are stored in rows in memory and

that it is possible to not specify the first dimension (that which appears

immediately after the name of the variable) of a matrix. In this case it will

take the dimensions needed to hold the data given at initialisation. The

other dimensions must be fixed in such a way that each element of the first

dimension occupies a known amount of memory.

In the following examples we will look at different ways of initialising the

declarations of the above variables.

int vector[4] = { 0, 1, 2, 3 };

char string[20] = { 'H', 'e', 'l', 'l', 'o', '\0' } ;

unsigned short table[10] = { 98, 76, 54, 32, 1, };

double matrix[3][3] = {{0.0, 0.1, 0.2},

 {1.0, 1.1, 1.2},

GNUFDL • PID_00148429 27 The structured programming

 {2.0, 2.1, 2.2} };

In the case of the character string, elements coming after \0' will not have

an initial value. What is more, they can have any value. This is therefore an

incomplete initialisation.

In order to make it easier to initialise character strings, we can also do it in

the following way:

char string[20] = "Hello";

Furthermore, if this string does not need to be changed we can use the fact

that we do not need to specify the dimension if it can be calculated from the

initialisation performed for the corresponding variable.

char string[] = "Hello";

In the case of a table, we perform a complete initialisation by using the last

comma to indicate that all subsequent elements will have the same value as

the last one given.

6.2. Reference

In order to reference an element of a matrix in a particular expression we need

to indicate its name and the position it occupies:

matrix[i0][i1]...[in]

where ik are expressions for which the result must be an integer value. The

expressions are usually very simple: one variable or one constant.

For example, to read the data for the 3 x 3 double real matrix from the standard

input which we declared above, we could write the following programs in

which the variables row and column are obviously positive integers:

/* ... */

for(row = 0; row < 3; row = row + 1) {

 for(column = 0; column < 3; column = column + 1) {

 printf("matrix[%u][%u]=? ", row, column);

 scanf("%lf ", &data);

 matriz[row][column] = data;

 } /* for */

} /* for */

/* ... */

GNUFDL • PID_00148429 28 The structured programming

It is important to bear in mind that the C compiler does not add code to check

the validity of the matrix indexes. As such, the matrix limits are not checked

and we can reference any element whether it belongs to the matrix or not.

This is always the responsibility of the programmer!

What is more, in C, the square brackets are operators for accessing

homogenous data structures (or matrices) which calculate the position of an

element from the memory address in which they are found and the argument

which gives them. This implies that it is possible to access one column of a

square matrix (for example: int A[3][3];) indicating only its first index

(for example: pcol = A[0];). Furthermore, it is possible to commit the

error of referring to an element in the form of A[1,2] (common in other

programming languages). In this case the compiler will accept the reference as

it is a valid way of accessing the last column of the matrix, since the comma is

a concatenation operator for expressions, the result of which is that of the last

expression solved, so in the above example, A[1,2] would in fact be, A[2].

6.3. Examples

In the first example, the program checks to see if a word or phrase is a

palindrome, i.e. if it reads the same backwards as forwards.

#include <stdio.h>

#define LENGTH 81

#define NULL '\0'

main()

{

 char text[LENGTH];

 unsigned int length, left, right;

 printf("Palindrome checker.\n");

 printf("Enter text: ");

 gets(text);

 length = 0;

 while(text[length] != NULL) {

 length = length + 1;

 } /* while */

 left = 0;

 right = length;

 while((text[left] == text[right]) && (left < right)) {

 left = left +1;

 right = right - 1;

 } /* while */

 if(left < right) {

 printf("This is not a palindrome.\n");

 } else {

 printf("This is a palindrome!\n");

 } /* if */

Example

One of the most well-known
palindromes is the following: A
man, a plan, a canal, Panama!

GNUFDL • PID_00148429 29 The structured programming

} /* main */

As gets uses the reference of the whole character string as an argument,

meaning the address of the initial position it occupies in memory, we do not

need to use the operator "address of".

The following program stores the coefficients of a polynomial in a vector for

later evaluation. The polynomial has the following form:

P(x) = a MAX_DEGREE-1x
MAX_DEGREE + ... + a 2x

2 + a 1x + a 0

Polynomials would be stored in a vector in the following way:

a[MAX_DEGREE-1] = a MAX_DEGREE-1

: :

a[2] = a 2

a[1] = a 1

a[0] = a 0

The program should evaluate the polynomial for a certain χ using the Horner

method in which the polynomial is handled as if it was expressed in the form:

P(x) = (... (a MAX_DEGREE-1x + a MAX_DEGREE-2)x + ... + a 1)x + a 0

As such, the highest level coefficient is multiplied by χ and the coefficient of

the preceding degree is added to it. The result is again multiplied by χ as long

as it has not reached the independent term in the process. If it has then we

have obtained the final result.

#include <stdio.h>

#define MAX_DEGREE 16

main()

{

 double a[MAX_DEGREE];

 double x, result;

 int degree, i;

 printf("Evaluation of polynomials.\n");

 for(i = 0; i < MAX_DEGREE; i = i + 1) {

 a[i] = 0.0;

 } /* for */

 printf("maximum degree of the polynomial = ? ");

Note

This method reduces the
number of operations that will
need to be performed as we
do not need to calculate any
power of x.

GNUFDL • PID_00148429 30 The structured programming

 scanf("%d", °ree);

 if((0 <= degree) && (degree < MAX_DEGREE)) {

 for(i = 0; i <= degree; i = i + 1) {

 printf("a[%d]*x^%d = ? ", i, i);

 scanf("%lf", &x);

 a[i] = x;

 } /* for */

 printf("x = ? ");

 scanf("%lf", &x);

 result = 0.0;

 for(i = degree; i > 0; i = i - 1) {

 result = x * result + a[i-1];

 } /* for */

 printf("P(%g) = %g\n", x, result, x));

 } else {

 printf("The degree must be between 0 and %d!\n",

 MAX_DEGREE-1

); /* printf */

 } /* if */

} /* main */

We recommend you to program these examples to gain practice in

programming with matrices.

GNUFDL • PID_00148429 31 The structured programming

7. Heterogeneous structures

Heterogeneous data structures are able to contain data of different types. They

are generally groups of data (tuples) which form a logical unit with respect to

the information processed by the programs which use them.

7.1. Tuples

Tuples are groups of different data types. Each element within a tuple is

identified by a specific field name. In C these tuples are called structures

(struct).

Similarly as with matrices, they are used to organise data from a logical

point of view. This logical organisation implies that we can treat groups of

closely-related data as a single unit. This means that programs which use them

will acknowledge the relationship between them and are therefore much more

intelligible and less prone to errors.

Note

We can achieve much more clarity if we use a tuple to describe a date than if we use three
distinct integers (day, month, year). Furthermore, references to the date fields include
the fact that they are a part of the tuple, this does not happen when using independent
variables.

7.1.1. Declaration

Declarations of heterogeneous structures or tuples in C must begin with

struct, this must be followed by a block of declarations of the variables which

belong to the structure followed by the name of the variable or those of a list

of variables which contain data of the type being declared.

Given that the procedure we have just described must be repeated for the

declaration of other identical tuples, we need to put a name (between struct

and the field declaration block) for the declared structures. In doing this we

only need to include the declaration of the fields of the structure in the first

variable of this type. For the rest it is enough to specify the name of the

structure.

The names of heterogeneous structures usually make them easier to identify.

In this case we will use one of the most common: add "_s" to the name as

a postfix.

The following example describes how we could relate a data structure to

the location of a plane on radar at an air traffic control centre and the

corresponding variable (plane). As can be observed, the declaration of the

Example

Dates (day, month, year),
personal information (name,
surname, address, town etc.)
entries in telephone directories
(number, user, address) and
many others.

GNUFDL • PID_00148429 32 The structured programming

fields of the same is not repeated in the subsequent declaration of a vector

for these structures to contain the information of up to MAXNAV planes (we

assume that this is the maximum number of planes within range and that it

has been defined beforehand):

struct plane_s {

 double radius, angle;

 double height;

 char name[33];

 unsigned code;

} plane;

struct plane_s planes[MAXNAV];

We can also give initial values to the structures using an assignment at the end

of the declaration. The values of the different fields must be separate using

commas and be placed between brackets:

struct person_s {

 char name[MAXLENGTH];

 unsigned short age;

} person = { "Carmen" , 31 };

struct person_s winner = { "unknown", 0 };

struct person_s people[] = { { "Eva", 43 },

 { "Pedro", 51 },

 { "Jesús", 32 },

 { "Anna", 37 },

 { "Joaquín", 42 }

 }; /* struct person_s people */

7.1.2. Reference

Referencing a specific field of a tuple is done using the name of the field after

the name of the variable containing it, the two must be separated using a

structure field access operator (a full stop).

In the following program we will use structured variables which contain two

real numbers to indicate a Cartesian point on a plane (struct cartesian_s)

and polar (struct polar_s). The program will ask for the Cartesian

coordinates of a given point and then it will transform them into polar

coordinates (angle and radius, or distance from the origin). Observe that two

variables are declared using direct initialisation: prec indicates the precision

we are working at and pi stores the value of the constant Π with the same

precision.

#include <stdio.h>

#include <math.h>

Example

winner.age = 25;
initial =
people[i].name[0];

GNUFDL • PID_00148429 33 The structured programming

main()

{

 struct cartesian_s { double x, y; } c;

 struct polar_s { double radius, angle; } p;

 double prec = 1e-9;

 double pi = 3.141592654;

 printf("Cartesian coordinates to polar coordinates.\n");

 printf("x = ? "); scanf("%lf", &(c.x));

 printf("y = ? "); scanf("%lf", &(c.y));

 p.radius = sqrt(c.x * c.x + c.y * c.y);

 if(p.radius < prec) { /* if the radius is zero ... */

 p.angle = 0.0; /* ... the angle is zero. */

 } else {

 if(-prec<c.x && c.x<prec) { /* if c.x is zero ... */

 if(c.y > 0.0)p.angle = 0.5*pi;

 elsep.angle = -0.5*pi;

 } else {

 p.angle = atan(c.y / c.x);

 } /* if */

 } /* if */

 printf("radius = %g\n", p.radius);

 printf("angle = %g (%g degrees sexagesimal)\n",

 p.angle,

 p.angle*180.0/pi

); /* printf */

} /* main */

The above program makes use of the standard mathematical functions sqrt

and atan to calculate the square root and the arc tangent respectively. This

means that we need to include the corresponding header files (#include

<math.h>) in the source code.

7.2. Multiple type variables

These are variables whose content can vary between different data types. The

data type must be one of those indicated in its declaration and the compiler

will reserve space for the one which has the largest size. Their declarations are

similar to those for tuples.

Example

union number_s {
 signed integer;
 unsigned natural;
 float real;
} number;

GNUFDL • PID_00148429 34 The structured programming

The use of this class of variable can allow us to save space. However, we

have to remember that to manage these variable type fields we need to have

information (explicit or implicit) on the type of data being stored in them at

a certain time.

As such, they are often combined in tuples which contain a field which will

show the type of data they contain. For example, look at the declaration of

the following variable (insurance), in which the field good_type shows us

which multiple-type structures are present in its content.

struct insurance_s {

 unsigned policy;

 char holder[31];

 char NIF[9];

 char asset_type; /* 'C': residence, */

 /* 'F': life, */

 /* ''M': vehicle. */

 union {

 struct {

 char ref_catastro[];

 float area;

 } residence;

 struct {

 struct date_s birth;

 char beneficiary[31];

 } life;

 struct {

 char registration[7];

 struct date_s manufacture;

 unsigned short accidents;

 } vehicle;

 } information;

 unsigned value;

 unsigned premium;

} insurance;

Using this we can include information about a number of insurance policies

on the same table no matter what type of policies they are.

struct insurance_s insured[NUMINSURANCE];

In all cases, the data type union is only used infrequently.

GNUFDL • PID_00148429 35 The structured programming

8. Abstract data types

Abstract data types are data types which are attributed with a meaning

relating to the problem we wish the program to solve, they therefore have a

higher level of abstraction than the computational model. These data types

are therefore transparent to the compiler and subsequently irrelevant in the

corresponding executable code.

In practice, any defined data structure is in fact a group of data relating to

the problem and, as such, an abstract data type. An integer which is used for

a different purpose may also be one, for example one which is used to store

logical values ("true" or "false").

In all cases, the use of abstract data types will improve the legibility of

programs (among other things we will look at later). They also allow us to use

declarations of the types described above without having to repeat a part of

the declaration as we only need to indicate the name which was assigned to it.

8.1. Defining abstract data types

To define a new data type name we just need to declare a variable preceded by

typedef. In this declaration the name of the variable will in fact be the name

of the new data type. Several examples are shown below.

typedef char boolean, logical;

#define MAXSTRLEN 81

typedef char string[MAXSTRLEN];

typedef struct person_s {

 string name, address, town;

 char post_code[5];

 unsigned telephone;

} person_t;

In the above definitions we can observe that the syntax does not vary with

respect to the declaration of the variables except for the inclusion of the key

word typedef, this is short for "type definition". Using these definitions we

are now ready to declare variables of the corresponding types:

boolean correct, ok;

string teacher_name;

person_t students[MAX_GROUP];

GNUFDL • PID_00148429 36 The structured programming

We always recommend using a type name which identifies the content

of the variable in a meaningful way in the problem that we wish the

program to resolve.

From this point on, all the examples will use abstract data types when

necessary.

In the context of this book we prefer that type names always end in "_t".

8.2. Enumerated types

Enumerated data types are an integer-compatible data type in which an

integer and a certain symbol are associated (the enumeration constant). In

other words, it is an integer data type in which a set of values are given a name

(enumerated). Its use can replace the symbolic constant definition command

in the preprocessor (#define) when these are composed of integers.

The following example shows how they are declared and how they can be

used:

/* ... */

enum { RED, GREEN, BLUE } rgb;

enum bool_e { FALSE = 0, TRUE = 1 } logical;

enum bool_e found;

int colour;

/* ... */

rgb = GREEN;

/* An enumerate can be assigned to an integer: */

colour = RED;

logical = TRUE;

/* An integer can be assigned to an enumerate, */

/* even if it does not have a symbol associated with it: */

found = -1;

/* ... */

The enumerated variable rgb can contain any integer value (of type int),

but there will be three integer values identified by the names RED, GREEN and

BLUE. If the value associated with the symbols does matter, we must assign a

value to each symbol using the equals sign, as shown in the declaration for

logical.

The enumerated type can have a specific name (bool_e in the example) which

avoids repeating the enumerate in a subsequent declaration of a variable of

the same type (in the example: found).

GNUFDL • PID_00148429 37 The structured programming

It is also possible and also advisable to define an associated data type:

typedef enum bool_e { FALSE = 0, TRUE = 1 } bool;

In this particular case we use the name bool instead of bool_t or logical

as it matches the name of the primitive data type in C++. Given that it is used

very often, it will be considered to be defined in the rest of the text. (However,

we do need to remember that a variable of this type can acquire values other

than 1 and be, conceptually TRUE.)

8.3. Example

In the programs we have already looked at, we have used variables of

structured data types which are (or may be) frequently used in other programs

of the same nature. It is therefore convenient to convert structured data type

declarations to type definitions.

In particular, the program for evaluating polynomials using the Horner

method should have a structured data type which represents the information

of a polynomial (maximum degree and coefficients).

The program shown below contains a data type definition polynomial_t to

identify its components as data within the same polynomial. The maximum

degree is also used to find out which elements of the vector contain the

coefficients for each degree and which do not. This program performs the

symbolic derivation of a given polynomial (symbolic derivation implies

obtaining another polynomial which represents the polynomial function

given as the input).

#include <stdio.h>

#define MAX_DEGREE 16

typedef struct polynomial_s {

 int degree;

 double a[MAX_DEGREE];

} polynomial_t;

main()

{

 polynomial_t p;

 double x, coeff;

 int i, degree;

 p.degree = 0; /* initialisation of (polynomial_t) p */

 p.a[0] = 0.0;

 printf("Symbolic derivation of polynomials.\n");

 printf("Degree of polynomial = ");

 scanf("%d", &(p.degree));

GNUFDL • PID_00148429 38 The structured programming

 if((0 <= p.degree) && (p.degree < MAX_DEGREE)) {

 for(i = 0; i <= p.degree; i = i + 1) { /* reading */

 printf("a[%d]*x^%d = ? ", i, i);

 scanf("%lf", &coeff);

 p.a[i] = coeff;

 } /* for */

 for(i = 0; i < p.degree; i = i + 1) { /* derivation */

 p.a[i] = p.a[i+1]*(i+1);

 } /* for */

 if(p.degree > 0) {

 p.degree = p.degree -1;

 } else {

 p.a[0] = 0.0;

 } /* if */

 printf("Derived polynomial:\n");

 for(i = 0; i < p.degree; i = i + 1) { /* printing */

 printf("%g*x^%d +", p.a[i], i);

 } /* for */

 printf("%g\n", p.a[i]);

 } else {

 printf("The degree of the polynomial must be");

 printf(" between 0 and %d!\n", MAX_DEGREE-1);

 } /* if */

} /* main */

GNUFDL • PID_00148429 39 The structured programming

9. Files

A file is a homogenous data structure which is different in that the data is

stored outside of the main memory. These are therefore data structures which

are found in an external or secondary memory (however it is possible that

some temporary files are only to be found in the main memory).

To access the data in a file, the computer must have the appropriate devices

available and be able to read them and, optionally, write data to the

appropriate media.

Given that they reside on permanent information media, they can maintain

information between several executions of a single program or serve as a

source or repository for information for any program.

Given the capacities of these devices, the size of the files can be much larger,

even larger than the main memory held in the computer. For this reason, the

main memory will only hold a part of the content of the file in use and the

information needed for handling it.

No less important is that files are data structures of an undefined number.

Over the next few sections we will look at aspects relating to files in C, these

are known as byte streams. These files are simple homogenous data structures

in which each piece of data is a single byte. There are usually two types: ASCII

text files (each byte is a character) and binary files (each byte matches a byte

which forms part of a piece of data of one of the data types which exist).

9.1. Byte stream files

Files of the byte stream type in C are sequences of bytes which can be

considered to be either a copy of the memory content (binary) or as a character

string (textual). In this section we will mostly look at the latter as they are

more common.

Given that they are stored on an external device, we need to have information

about them in the main memory. This means all the information needed to

control a file of this type and part of the data it contains (or which it will need

to contain if it is written) will be contained in a variable of the FILE.

Example

Floppy drives, hard disks, CD's,
DVD's, memory cards etc.

GNUFDL • PID_00148429 40 The structured programming

The FILE data type is a tuple composed of, among other fields, the name of

the file, its length, the position of the last byte read or written and a buffer

(temporary memory) which contains BUFSIZ file bytes. This is needed to

prevent access to the affected peripheral device and, given that read and write

operations are done in blocks of bytes, to perform them more rapidly.

Fortunately there are standard functions available to perform all the

operations we have just mentioned. As with the FILE structure and the

BUFSIZ constant, these are declared in the file stdio.h. In the next section

we will look at the most common ones.

9.2. Standard file functions

To access the information in a file it must first be "opened". This means that

we have to localise and create a variable of the FILE. When the open function

is executed it will return the memory address of the variable it creates or NULL

if it has not been able to open the file indicated.

When a file is opened we need to specify if its content is to be read

(opening_mode = "r"), if we need to add more data (opening_mode =

"a"), or if we want to create it again (opening_mode = "w").

We should also indicate whether the file is a text file (the ends of lines can be

transformed lightly) or whether it is binary. This is done by adding a "t" or

a "b"respectively to the opening mode. If we omit this information the file

will open in text mode.

Once opened, we can either read the content or write new information to it.

Once we have finished, we need to close it. This means that we need to tell

the operating system that we are not going to work on it any more and any

pending information needs to be written to the corresponding buffer for each

one. All this is done by the standard file closing function.

The following code shows the algorithmic scheme for working with files and

also details the file re-opening function which uses the same control data

structure. Bear in mind that we must have already closed the above-mentioned

file:

/* ... */

/* We declare a variable to contain */

/* the reference for the FILE structure: */

FILE* file;

/* ... */

file = fopen(file_name, opening_mode);

/* The opening mode could be "r" for read, */

/* "w" for write, "a" for add or */

/* "r+", "w+" or "a+" for updating (read/write). */

Note

We have to be careful with
the third of these: If the file
already exists we will lose its
content!

GNUFDL • PID_00148429 41 The structured programming

/* We can add the suffix */

/* "t" for text or "b" for binary. */

if(file != NULL) {

 /* Treatment of the file data. */

 /* Possible re-opening of the same file: */

 file = freopen(

 file_name

 opening_mode

 file

); /* freopen */

 /* Treatment of the file data. */

 fclose(file);

} /* if */

The next sections will deal with the standard files for working with streaming

files or streams. The variables which are used in the examples are of the

appropriate type and, in particular, stream is of the FILE* type, meaning that

it refers to a file structure.

9.2.1. Standard data output functions (write) for files

These functions are very similar to those we have already seen for reading data

from the standard input. However with these it is very important to know if

we have reached the end of the file and that there is therefore no more data

to read.

fscanf(stream, "format" [,list_of_&variables])

Functioning in a similar way to scanf(), it returns the number of arguments

actually read as a result. It therefore provides an indirect way of determining

if we have reached the end of the file. In this case it will activate the end of

file condition. In fact, a lower number of assignations can be simply due to an

unexpected input such as, for example, the input of an alphabetical character

for a "%d".

Conversely, this function returns EOF (end of file) if it has reached the end

of the file and has not been able to perform an assignation. It is therefore

much more convenient to use the function which checks this condition before

indirectly checking using the number of correctly-read parameters (the file

may contain more data) or through the return of EOF (will not occur if at least

one piece of data has been read).

Example

fscanf(stream, "%u%c", &num_dni, &letter_nif);
fscanf(stream, "%d%d%d", &code, &price, &amount);

GNUFDL • PID_00148429 42 The structured programming

feof(stream)

Returns 0 if the end of file has not been reached. If it has, it will return a

number other than zero, meaning that the end of file condition is true.

fgetc(stream)

This reads a character from the stream. If it can not read a character as the end

of file has been reached it will return EOF. This constant is already defined in

the header file stdio.h; and can therefore be freely used in the code.

Note

It is important to remember that some files may have an EOF character in the middle of
the stream as the end of file is determined by its length.

fgets(string, maximum_length, stream)

This reads a character string from the file until it finds an end of line, until it

reaches maximum_length (–1 for the end of string marker) of characters, or

up to the end of file. It returns NULL if it finds the end of file during reading.

if(fgets(string, 33, stream) != NULL) puts(string);

9.2.2. Standard data output functions (write) for files

These functions also behave in a similar manner to the functions for outputing

data to the standard device. They all write characters in the indicated output

stream:

fprintf(stream, "format" [, list_of_variables])

The fprintf() function writes characters to the indicated formatted output

stream. If a problem occurs, the function will return the last character written

or the EOF.

fputc(character, stream)

The fputc() function writes characters to the indicated output stream

character by character. If a writing error occurs or the media is full, the

fputc() function activates a file error indicator. This indicator can be checked

using the ferror(stream)function which returns a zero (false logic value)

if there is no error.

fputs(string, stream)

GNUFDL • PID_00148429 43 The structured programming

The function fputs() writes characters to the indicated output stream

allowing complete strings to be recorded. If a problem occurs, this function

acts in a similar way to fprintf().

9.2.3. Standard stream file position functions

With stream files we can determine the read or write position, i.e. the position

of the last byte read or written. This is done using the ftell(stream)

function which returns a long integer indicating the position or -1 if there

has been an error.

There are also functions for changing the read position (and the write position

if the files are to be updated):

fseek(stream, displacement, address)

This displaces the read/write "header" with respect to the current position by

the value of the long integer indicated by displacement if address is equal

to SEEK_CUR. If this address is SEEK_SET, then displacement becomes a

displacement with respect to the beginning and, as such, indicates the final

position. On the other hand, if it is SEEK_END, it will indicate the position

with respect to the last position of the file. If repositioning is correct, it will

return 0.

rewind(stream)

This locates the "header" at the beginning of the file. This function is

equivalent to:

seek(stream, 0L, SEEK_SET);

where the constant of the long int type is indicated using the suffix "L". This

function will therefore allow us to re-read a file from the beginning.

9.2.4. Input/output functions for standard devices

Standard terminal inputs and outputs can be performed using standard

input/output functions and also using stream file handling functions. For

the second of these, we need to use the standard device references for the

files which are opened on the execution of a program. In C there are at least

three pre-defined files: stdin for the standard input, stdout for the standard

output and stderr for the output of error messages, which often matches

stdout.

GNUFDL • PID_00148429 44 The structured programming

9.3. Example

Below is shown a small program that counts the number of words and lines

in a text file. The program understands a word as being a string of characters

between two blank spaces. A blank space is any character which causes

isspace() to return a true value. Ends of lines are marked using the return

character (ASCII number 13), meaning a '\n'. It is important to observe the

use of functions relating to byte stream files.

As we will see, the structure of programs that work with these files include

the coding of some of the algorithmic schemes for the processing of data

sequences (stream files are in fact sequences of bytes). As we are counting the

words and the lines, we will need to run through the whole input sequence.

We can therefore observe that the code of the program perfectly follows the

algorithmic scheme for running through sequences.

/* File: nwords.c */

#include <stdio.h>

#include <ctype.h> /* Contains: isspace() */

typedef enum bool_e { FALSE = 0, TRUE = 1 } bool;

main()

{

 char file_name[FILENAME_MAX];

 FILE* stream;

 bool in_word;

 char c;

 unsigned long int nwords, nlines;

 printf("Word and line counter.\n");

 printf("Name of file: ");

 gets(file_name);

 stream = fopen(file_name, "rt");

 if(stream != NULL) {

 nwords = 0;

 nlines = 0;

 in_word = FALSE;

 while(! feof(stream)) {

 c = fgetc(stream);

 if(c == '\n') nlines = nlines + 1;

 if(isspace(c)) {

 if(in_word) {

 in_word = FALSE;

 nwords = nwords + 1;

 } /* if */

 } else { /* if the character is not a blank space */

 in_word = TRUE;

GNUFDL • PID_00148429 45 The structured programming

 } /* if */

 } /* while */

 printf("Number of words = %lu\n", nwords);

 printf("Number of lines = %lu\n", nlines);

 } else {

 printf("The file can not be opened!\n");

 } /* if */

} /* main */

Note

Words are detected by checking the end of the word, this must consist of a character
which is not a blank space followed by one which is a blank space.

GNUFDL • PID_00148429 46 The structured programming

10.Principles of modular programming

Reading the source code of a program implies tracking the flow of the

execution of its instructions (flow control). Obviously the execution of

instructions in their sequential order does not require much attention. But, as

we have seen, programs can also contain conditional, alternative and iterative

instructions. With all these, flow control tracking can get complicated if the

source code occupies more space than can be viewed (more than 20 lines for

example).

It is therefore convenient to group those parts of the code which perform

a specific function into an individually-identified sub-program. This is even

more useful when dealing with functions which are performed several times

during the execution of a program.

In the following sections we will see how a C program can be divided into

several sub-programs. This layout is similar for other programming languages.

GNUFDL • PID_00148429 47 The structured programming

11.Functions

In C, the groups of code into which a program is divided are called functions.

What is more, in C all code must be divided into functions and in fact the

whole program is merely a function: the main function (main).

Generally speaking, the code of a function will include at least the

programming of a few algorithmic schemes for processing data sequences

and some conditional or alternative instructions. At least those required to

perform a specific task.

11.1. Declaration and definition

The declaration of any object (function or variable) implies demonstrating its

existence to the compiler, while a definition implies describing its content.

We have seen the difference between these two in terms of variables but have

only mentioned it in terms of functions.

Declaration is exactly the same as for variables: the demonstration of

existence. In this case, however, we will need to describe the arguments it

takes and the result returned so that the compiler can generate the code and

use them.

Header files contain the function declarations.

Conversely, defining a function deals with the program, which is its content.

So, in a similar way to variables, the content can be defined by the position of

the first of its bytes in the main memory. The first byte is the first of the first

instruction executed to perform the program's task.

11.1.2. Declarations

The declaration of a function consists of specifying the type of data returned,

the name of the function, the list of parameters it receives in parenthesis and

a semi-colon to end the declaration.

data_type function_name(parameter_list);

We should remember that we can not reference a function which has not been

declared beforehand. For this reason we need to include the header files for

the standard functions of the C library as stdio.h, for example.

GNUFDL • PID_00148429 48 The structured programming

If a function has not been declared beforehand, the compiler will

assume that it returns an integer. In the same way, if we omit the data

type it returns, it will assume that it is an integer.

The parameter list is optional and consists of a list of declarations of variables

which will contain data taken as arguments of the function. Each declaration

is separated from the next using a comma. For example:

float average_score(float theo, float prb, float pract);

bool pass(float mark, float tolerance);

If the function returns no value or no argument is needed, this should be

indicated using the empty data type (void):

void warning(char message[]);

bool yes_or_no(void);

int read_code(void);

11.1.3. Definitions

The definition of a function should always be preceded by its declaration,

which should now include the list of parameters, if there are any. This header

does not end with a semi-colon but will be followed by the body of the

function written between opening and closing brackets:

data_type function_name(parameter_list)

{ /* body of the function: */

 /* 1) declaration of local variables */

 /* 2) instructions of the function */

} /* function_name */

As we mentioned before, defining the function assumes that it has already

been declared. Therefore, functions which perform tasks from other programs

and, in particular, the main program (the main function) must be defined

beforehand.

11.1.4. Calls

The mechanism for using a function in the code is the same as for the standard

functions of the C library: We only need to refer to them by their name,

provide the arguments required for it to carry out its task and, optionally,

use the returned data in an expression which will usually be condition or an

assignment.

GNUFDL • PID_00148429 49 The structured programming

The procedure by which the flow of the execution of instructions goes to the

first instruction of a function is called a call procedure. We therefore talk about

calling functions each time we wish to indicate that a function is to be used

in a program.

We will now look at the sequence of a call procedure:

1) Prepare the execution environment for the function, this means reserving

the space for the returned value, the formal parameters (the variables

which are identified with each of the arguments present), and the local

variables.

2) Perform the parameter step, this means copying the resulting values from

the evaluation of each of the arguments of the call instruction to the

formal parameters.

3) Execute the corresponding program.

4) Free the space occupied by the local environment and return the possible

return value before going back to the instruction execution flow where

the call was found.

This last step is done using the return instruction which will obviously be the

last instruction executed in the function:

return expression;

Note

This instruction should appear empty or not appear at all if the function is a void type,
meaning if it has been explicitly declared to not return any data.

The body of a function can also include a call to itself. This is known as a

recursive call as the function is defined in terms of itself. These types of call

are not incorrect but we need to make sure they do not repeat indefinitely,

meaning that there must be a case where the flow of the execution of

instructions does not imply performing another recursive call and also that

the transformations applied to the parameters leads, at some point, to the

prior execution conditions. In particular we cannot do the following:

/* ... */

void menu(void)

{

 /* show options menu, */

 /* execute selected option */

 menu();

/* ... */

GNUFDL • PID_00148429 50 The structured programming

The above function will result in an indefinite number of calls to menu()

and therefore the continual creation of local environments without freeing

them afterwards. In this situation, it is possible that the program will not

execute correctly after a while due to a lack of memory for the creation of new

environments.

11.12. Scope of variables

The scope of a variable refers to the parts of a program which can use them.

In other words, the scope of a variable covers all those instructions which can

access them.

The code of a function can use all global variables (those which are "visible" to

any instruction within the program), all formal parameters (variables which

are the arguments of the function) and all local variables (those which are

declared within the body of a function).

In some cases it may not be appropriate to use global variables as they

make it harder to compress the source code, this will make debugging and

maintenance of the program harder later on. To illustrate this let's look at the

following example:

#include <stdio.h>

unsigned int A, B;

void reduce(void)

{

 if(A < B) B = B - A;

 else A = A - B;

} /* reduce */

void main(void)

{

 printf("The MCD of: ");

 scanf("%u%u", &A, &B);

 while(A!=0 && B!=0) reduce();

 printf("... is %u\n", A + B);

} /* main */

Although this program works correctly we can not directly deduce what the

reduce()function does, nor can we determine the variables it uses nor those

it affects. We therefore need to adopt the rule that no function may depend

on or affect global variables. Due to the fact that in C all code is divided into

functions, we can easily see that there should be no global variables.

GNUFDL • PID_00148429 51 The structured programming

All variables are therefore local in scope (formal parameters and local

variables). In other words, they are declared in the local environment of a

function and can only be used by instructions within the same.

Local variables are created at the moment the corresponding function is

activated, meaning after the execution of the instruction which calls this

function. For this reason their storage class is known as automatic, as they are

created and destroyed automatically during the function call procedure. This

storage class can be made explicit using the key word: auto:

int any_function(int a, int b)

{

 /* ... */

 auto int local_variable;

 /* rest of the function */

} /* any_function */

Sometimes it is useful that the local variable is stored temporarily in one

of the processor registries to avoid having to update it continually in the

main memory, this speeds up the execution of the instructions (normally

these will be iterative). In these cases we can ask the compiler to create the

machine code in this way; i.e. so that the local variable is stored in one of the

processor registries. However many compilers are able to perform this kind of

optimisation autonomously.

This storage class can be indicated using the keyword register:

int any_function(int a, int b)

{

 /* ... */

 register int counter;

 /* rest of the function */

} /* any_function */

To achieve the opposite effect we can indicate that a local variable should

always reside in memory using the indication volatile as the storage class.

This is only appropriate when the variable can be modified from outside the

program.

int any_function(int a, int b)

{

 /* ... */

 volatile float temperature;

 /* rest of the function */

} /* any_function */

GNUFDL • PID_00148429 52 The structured programming

In the above cases these are automatic variables. However, we will sometimes

want a function to keep the information contained in a variable between

separate calls. This allows the corresponding algorithm to "remember" an

aspect of a past condition. To achieve this we need to indicate that the variable

has a static storage class, meaning that it is static or immovable in the

memory.

int any_function(int a, int b)

{

 /* ... */

 static unsigned number_calls = 0;

 number_calls = number_calls + 1;

 /* rest of the function */

} /* any_function */

In the above case it is important to initialise the variables in the declaration, if

we do not, we will not know the initial content before the function is called.

As a final note, we should mention that storage classes are rarely used

in C programming. In fact, with the exception of static, they have

virtually no effect in current compilers.

11.3. Parameters by value and by reference

Passing parameters refers to the action of transforming formal parameters to

real parameters, this means assigning a content to the variables representing

the arguments.

type function_call(

 formal_parameter_1,

 formal_parameter_2,

 ...

);

calling_function(...)

{

 /* ... */

 calling_function(real_parameter_1, real_parameter_2, ...)

 /* ... */

} /* calling_function */

There are two possibilities for this: that the arguments receive the result of

the evaluation of the corresponding expression or they are replaced by the

variable indicated in the real parameter at the same position. The first case is

GNUFDL • PID_00148429 53 The structured programming

known as passing�parameters�by�value, while the second is known as passing

a�variable (any change to the argument is a change to the variable which

constitutes the real parameter).

Passing by value consists of assigning the resulting value of the real parameter

at the same position to the variable of the formal parameter. Passing a variable

consists of replacing the variable of the real parameter with that of the

corresponding formal parameter and, consequently, being able to use it within

the same function with the name of the formal parameter.

In C, passing parameters is only done by value, this means that all of

the parameters in the call are calculated and the results assigned to the

corresponding formal parameter in the function.

In order to modify a variable which we wish to pass as an argument when

calling a function, we need to pass the memory address at which it is to be

found. This means we need to use the get address operator (&) the result of

which is the memory address at which the argument resides (variable, tuple

field, or matrix element among others). This is the mechanism which makes

the scanf function deposit the values read into the variables passed to it as

arguments.

In call functions, the formal parameter which receives a reference to a variable

instead of a value must be declared in a special way, an asterisk must be

placed before its name. The asterisk in this context can be read as the "content

whose initial position is found in the corresponding variable". Therefore, in

a function such as the one shown below, the message would be: "the content

whose initial position is found in the formal parameter numerator" is of an

integer type. It would be read the same for the denominator:

void simplifies(int *numerator, int *denominator)

{

 int mcd;

 mcd 0 maximum_common_divisor(*numerator, *denominator);

 *numerator = *numerator / mcd;

 *denominator = *denominator / mcd;

} /* simplifies */

/* ... */

 simplifies(&a, &b);

/* ... */

GNUFDL • PID_00148429 54 The structured programming

Although we look at this more closely later on, we need to remember that the

asterisk in the code part must be read as "the content of the variable which

is stored in the memory position of the corresponding argument". We must

therefore use *formal_parameter each time we wish to use the variable

passed by reference.

11.4. Example

The following program numerically calculates the integral of a function in

a certain interval using the Simpson rule. Basically this method consists of

dividing the integration interval into a certain number of segments of the

same length which will form the base of a rectangle, the height of which will

be determined by the value of the function to integrate at the initial point of

the segment. The sum of the areas of these rectangles will give the approximate

area defined by the function, the axis of the X's and the perpendicular lines

to that which passes through the initial and final points of the integration

segment.

Figure 3.

/* File: simpson.c */

#include <stdio.h>

#include <math.h>

double f(double x)

{

 return 1.0/(1.0 + x*x);

} /* f */

double integral_f(double a, double b, int n)

{

 double result;

 double x, dx;

 int i;

GNUFDL • PID_00148429 55 The structured programming

 result = 0.0;

 if((a < b) && (n > 0)) {

 x = a;

 dx = (b-a)/n;

 for(i = 0; i < n; i = i + 1) {

 result = result + f(x);

 x = x + dx;

 } /* for */

 } /* if */

 return result;

} /* integral_f */

void main(void)

{

 double a, b;

 int n;

 printf("Numerical integration of f(x).\n");

 printf("Initial point of the interval, a = ? ");

 scanf("%lf", &a);

 printf("Final point of the interval, b = ? ");

 scanf("%lf", &b);

 printf("Number of divisions, n = ? ");

 scanf("%d", &n);

 printf(

 "Result, integral(f)[%g,%g] = %g\n",

 a, b, integral_f(a, b, n)

); /* printf */

} /* main */

GNUFDL • PID_00148429 56 The structured programming

12.C preprocessor macros

The preprocessor does not just replace simple symbols like the ones we have

seen. It can also perform actions with parameters. Definitions of symbol

replacements using parameters are called "macros".

#define symbol constant_expression

#define macro(arguments) const_expression_with_arguments

The use of macros can help to clarify small sections of code by using

similar syntax to function calls.

In this way certain simple operations can benefit from having a meaningful

name instead of using constructions in C which can make it harder to

understand their meanings.

Example

#define absolute(x) (x < 0 ? -x : x)
#define rounding(x) ((int) (x + 0.5))
#define truncate(x) ((int) x)

We must bear in mind that the name of the macro and the left-hand bracket

can not be separated and that the continuation of the line (if the command

is too long) must be done using a backslash before the line feed character.

We should also be aware that macros replace each parameter name appearing

in the definition by the section of source code indicated as the argument.

Therefore:

absolute(2*integer + 1)

would be replaced by:

(2*integer + 1 < 0 ? -2*integer + 1 : 2*integer + 1)

it would therefore not be correct if it was negative.

Note

In this case it is possible to prevent the error if we place brackets around the argument
in the definition.

GNUFDL • PID_00148429 57 The structured programming

Summary

The organisation of the source code is essential for writing readable programs

which are easy to maintain and update. This is especially true for open code

program, i.e. free software.

In this unit we have reviewed the fundamental aspects involved in organising

code. In essence, the correct organisation of the source code of a program

depends as much on the instructions as in the data. We have therefore looked

at how to use data structures as well as how to organise the program.

The correct organisation of the program starts with a clear execution flow

of the instructions. Given that the simplest instruction flow is one in which

instructions are executed sequentially as they appear in the code, it is essential

that flow control instructions have a single input point and a single output

point. Structured programming is based on this method. In this method there

are only two types of flow control instructions: alternative and iterative.

Iterative instructions provide another challenge in determining the control

flow as we need to determine that the condition which stops the iteration

is satisfied at least once. For this reason we have reviewed the algorithmic

schemes used for the treatment of data sequences and we have looked at small

programs which, as well as serving as examples of structured programming,

are useful for performing data filtering operations using pipes (daisy-chained

processes).

To correctly organise the code and to be able to process complex information

we need to use data structuring. In this aspect we need to remember that

the program must reflect those operations performed on the information and

not so much the data elements they contain. We have therefore looked at

how to declare and use structured data, whether they are homogenous or

heterogeneous and we have described how to define new data types from basic

and structured data types. These new types are known as abstract data types as

they are transparent to the programming language.

When talking of data we have also looked at byte stream files. These

homogenous data structures are characterised by having an undefined

number of elements and residing in secondary memory, meaning on an

external media device, and lastly, in that they require specific functions for

accessing their data. We have therefore looked at the standard C functions

for using these types of files. Basically, programs which use them implement

algorithmic schemes which perform a run-through or search and which include

GNUFDL • PID_00148429 58 The structured programming

a specific initialisation for opening the files, end of file checks for the iteration

condition, read and write operations for the processing of data sequences and,

lastly, a finalisation which includes closing the files used, among other things.

In the last section we looked at modular programming which involves

grouping instruction sequences into sub-programs which perform a specific

function and can be used more than once in the same program or in others.

The sub-program is therefore replaced in the execution flow of the program

by an instruction which will execute the corresponding sub-program. These

sub-programs are known as "functions" in C and the instruction which

executes it is known as a "call instruction". We have looked at how to call a

function and how parameter passing is the most important aspect of this.

Parameter passing involves the transfer of a data set to a function which uses it

to perform its task. Given that the function may need to return results which

cannot be stored in a simple variable, some of these parameters are used to pass

references to variables which could also contain returned values. We therefore

also analysed the problems associated with passing parameters by value and

by reference.

GNUFDL • PID_00148429 59 The structured programming

Self-evaluation

1. Write a program to determine the number of digits needed to represent a given whole
number. The algorithm should divide the number by 10 until the result is a number lower
than 10.

2. Write a program to determine the position of a projectile launched from a mortar at any
time. It should show the height and distance at regular time intervals until it hits the ground.
We will assume that the ground is flat and the input data is made up of the angle of the
barrel and the time interval you wish to use for displaying the data. We will assume that the
exit speed of the projectile is 200 m/s.

Note

We will assume that the mortar barrel is 1 m long and that the angle can vary between
45 and 85 degrees.

The following scheme summarises the various formulas which are needed to resolve the
problem:

Figure 4.

where x0 and y0 are the initial position (can be considered as 0 for both), and α is the
angle in radians (Π radians = 180°).

3. We wish to calculate the final amount accumulated by a pension plan using the initial
amount, the age of the insured person (we will assume they retire at 65) and the payments
and interest rate percentages returned each year. (we will assume that payments are made
on an annual basis.)

4. Program a filter which will calculate the average, the maximum and the minimum of a
series of real input numbers.

5. Use the filters from the last example in section "3.2 Filters and pipes"; meaning: calculate
the amounts of a data sequence { item code, price, amount } which generate another data
sequence { item code, amount } and then add together the amounts of the second data
sequence.

6. Write a program which calculates the standard deviation for the occupancy figures of a
public car park over a period of 24 hours. There will therefore be 24 pieces of input data.

This data should refer to the occupancy percentage (the number of occupied places in
relation to the total number of places) calculated at the end of each hour. It should also
indicate the times of the day having an occupancy percentage lower than the average minus
twice the standard deviation and those above the average plus twice the standard deviation.

GNUFDL • PID_00148429 60 The structured programming

Note

The standard deviation is calculated as the square root of the sum of the squares of the
differences between the data and the average, divided by the number of samples.

7. Check whether the letter of a given fiscal identity number is correct or not. The procedure
for calculating it will consist of performing the modulus 23 of the corresponding number.
The result of a position in a sequence of letters (TRWAGMYFPDXBNJZSQVHLCKE). The letter
at this position will be the NIF letter.

Note

To be able to compare letters we will need to change the input letter into upper case.
To do this we will use toupper(), whose declaration is in ctype.h and it returns the
character of the letter received in upper case as the argument. If it is not an alphabetical
character, or is already a capital letter, it will return the same character.

8. Write a program which calculates the minimum number of coins needed to give change
if we know the total amount to pay and the amount received in payment. The maximum
coin value is 2 Euros and the smallest is 1 cent.

Note

We should create a vector with the values of coins ordered by value.

9. Summarise the activity at a sales terminal by item. The program should show the number
of units sold for each item code. To do this you will need a file generated by the terminal
made up of pairs of integers: the first of these will be the code and the second, the number
sold. If items were returned, the amount will be displayed as a negative value. We also know
that there will never be more than 100 different item codes.

Note

We should use a vector of 100 tuples to store the corresponding information on the code
and the amount. As we do not know how many tuples will be needed, bear in mind that
we will need a variable which indicates the number stored in the vector (from 0 to the
number of different codes -1).

10. Re-program the above exercise so that the operations which affect the vector are carried
out in the specific function body.

Note

Define a new data type which contains the information on the products. We suggest the
one shown below for example.

typedef struct products_s {
 unsigned int n; /* Number of products. */
 sale_t product[MAX_PRODUCTS];
} products_t;

Remember that we will need to pass this type of variable by reference.

11. Search for a word in a text file. Write a program which asks for both the text of the word
and the name of the file. The result should be a list of all the lines in which the word is found.

We will assume that a word is a sequence of alphanumeric characters. We will need to use
the isalnum()macro which is declared in ctype.h, to determine whether a character is
alphanumeric or not.

GNUFDL • PID_00148429 61 The structured programming

Note

We will use the functions declared below in the proposed solution.

#define WORD_LENGTH 81
typedef char word_t[WORD_LENGTH;
bool same_words(word_t p1, word_t p2);
unsigned int read_word(word_t p, FILE *input);
void first_word(word_t word, char *phrase);

GNUFDL • PID_00148429 62 The structured programming

Answer key

1.

2.

GNUFDL • PID_00148429 63 The structured programming

3.

GNUFDL • PID_00148429 64 The structured programming

4.

GNUFDL • PID_00148429 65 The structured programming

5.

GNUFDL • PID_00148429 66 The structured programming

6.

GNUFDL • PID_00148429 67 The structured programming

GNUFDL • PID_00148429 68 The structured programming

7.

8.

GNUFDL • PID_00148429 69 The structured programming

9.

GNUFDL • PID_00148429 70 The structured programming

GNUFDL • PID_00148429 71 The structured programming

10.

GNUFDL • PID_00148429 72 The structured programming

GNUFDL • PID_00148429 73 The structured programming

11.

GNUFDL • PID_00148429 74 The structured programming

GNUFDL • PID_00148429 75 The structured programming

GNUFDL • PID_00148429 76 The structured programming

Advanced
programming
in C. The
development
of efficient
applications

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Josep Anton Pérez López
Lluís Ribas i Xirgo

PID_00148427

GNUFDL • PID_00148427 Advanced programming in C. The development of efficient applications

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148427 Advanced programming in C. The development of efficient applications

Index

Introduction... 5

1. Dynamic variables... 7

2. Pointers... 9

2.1. The relationship between pointers and vectors 11

2.2. Function references ... 13

3. The creation and destruction of dynamic variables................ 16

4. Dynamic data types... 18

4.1. Character strings ... 19

4.2. Lists and queues .. 22

4.2.1. Fundamental list operations .. 23

4.2.2. Queues .. 29

5. Top-down program design.. 32

5.1. Description .. 32

5.2. Example ... 32

6. Abstract data types and associated functions............................ 34

7. Header files.. 40

7.1. Structure .. 40

7.2. Example ... 42

8. Libraries.. 45

8.1. Creation ... 45

8.2. Use ... 46

8.3. Example ... 46

9. The tool make... 48

9.1. File makefile... 48

10. Relation with the operating system. passing parameters

to programs... 51

11. The execution of functions in the operating system............... 53

12. Process management... 55

12.1. Definition of a process .. 55

GNUFDL • PID_00148427 Advanced programming in C. The development of efficient applications

12.2. Background processes .. 56

12.2.1. Example .. 57

12.2.3. Concurrent processes ... 58

13. Threads.. 60

13.1. Example ... 60

14. Processes.. 64

14.1. Communication between processes ... 68

Summary.. 72

Self-evaluation.. 75

Answer key.. 82

GNUFDL • PID_00148427 5 Advanced programming in C. The development of efficient applications

Introduction

Programming a computer application usually produces a source code of

considerable size. Even using modular programming techniques and standard

library functions it can be a complex task to organise the code effectively. And

much more if we bear in mind that the code will usually have been developed

by a team of programmers.

We also need to remember that much of the information handled will not

have a pre-defined size and it will often not be presented in the most suitable

form to be processed. This means we will need to restructure the data so that

the algorithms treating it are more effective.

Last but not least, we should remember that most applications are constructed

from more than one program. This means that we need to organise the code

using a set of software development tools and the operating system in which

we are executing it.

In this unit we will look at several aspects of the above-mentioned problems.

From the point of view of a program in the context of an application which

contains it (even if it is the only one), it is important to adapt the actual size of

the data to be processed, its layout in dynamic structures and the organisation

of the code to the algorithm using it. Lastly, we will need to use the operating

system for coordination with other programs both inside and outside the same

application and also for interaction with the user.

Representing information in dynamic data structures allows us to adjust the

memory requirements of the program to the minimum required for solving

the problem and, also, to internally represent the information in such a way

that it is processed more efficiently. A dynamic data structure is no more than

a collection of data whose relationship has not been established a priori and

which can be modified during the execution of the program. This can not

be done using a vector for example as the data they contain is linked by

the position within the vector, its size must also be pre-defined within the

program.

In the first section we will look at dynamic variables and their use as data

stores which respond to the requirements for adaptability to the information

to be represented and the needs of the algorithm which has to handle it.

The source code of an application, whether a set of programs or a single

one, must be organised in such a way that the characteristics of a good

code are maintained (intelligible, easy to maintain and with an optimum

GNUFDL • PID_00148427 6 Advanced programming in C. The development of efficient applications

execution cost). To do this, we will need to use both modular and structured

programming and we will need to distribute it over several files to make it

more manageable and also to maintain legibility.

The section on the top-down design of programs will deal with aspects

which affect programming beyond modular programming. We will look at

aspects relating to the division of the program into algorithmic terms and the

grouping of sets of functions which are closely related. Given that the source

code is distributed over several files we will also look at aspects to do with

compilation and, especially, working with tools such as make.

Given the complexity of the source code of any applications it is advisable

to all the standard functions provided by the operating system. This makes

it more independent from the machine and also allows us to reduce the

complexity by leaving out certain tasks such as simple call instructions. In the

last section we will therefore look at the relationships between programs and

operating systems and how to make programs communicate with it and with

each other.

Lastly we will take a brief look at how to distribute the execution of a program

over several execution flows (or threads). This will deal with how to write

concurrent programs so that several tasks can be performed within the same

time period.

In this unit we will try to demonstrate more involved aspects of programming

using algorithms with a higher level of abstraction. At the end of this chapter

we hope readers will have achieved the following goals:

1) The appropriate use of dynamic variables in a program.

2) Awareness of dynamic data structures and especially lists and their

applications.

3) An understanding of the principle of top-down design in programming.

4) The ability to develop a library of functions.

5) To have basic knowledge on the relationship between the program and

the operating system.

6) To assimilate the concept of the execution thread and the rudiments of

concurrent programming.

Note

We saw an example relating
this issue in the last unit when
we looked at pipes.

GNUFDL • PID_00148427 7 Advanced programming in C. The development of efficient applications

1. Dynamic variables

The information processed by a program is made up of a data set which will

often not have a fixed size, the maximum size is not known and the data are

not related to each other in the same way etc.

Example

A program performing a syntactical analysis (which may also form part of a text
processing application) must be able to process phrases of different sizes and with
different numbers and categories of words. The words may also be related in very
different ways. For example, adverbs are related to verbs and both of these are distinct
from those which make up the noun phrase, among others.

The relationships existing between the elements forming a specific piece of

information can be represented using additional data which represents these

and which allows us to create a more efficient algorithm once they have been

calculated. In the above example it will be far more effective to perform the

required syntactic analysis using the syntactic tree and not from the simple

succession of words in the phrase to be handled.

The size of the information, meaning the number of pieces of data it is made

up of, will significantly affect the performance of a program. What is more,

the use of static variables for storage means that we must either be aware of

its maximum size a priori , or we must limit the treatment to only a portion

of the information. Although it is possible to know the maximum size we will

be wasting a lot of memory if the information occupies a much smaller size.

The static�variables are those which are declared in such a way that they have

a reserved memory space during the complete execution of the program. Only

global variables are really static variables in C.

The local�variables, on the other hand, are automatic because space is only

reserved for them during the execution of part of a program, they are then

destroyed automatically. Even so, they are still static variables with respect to

the scope in which they are used as the space reserved for them is limited.

The dynamic�variables, however, can be created and destroyed during the

execution of a program and are global in nature, meaning they are "visible"

from any point of the program. As it is possible to create an indefinite number

of these variables, they can be adjusted to the size required to represent the

information for a particular problem without wasting any memory space.

GNUFDL • PID_00148427 8 Advanced programming in C. The development of efficient applications

In order to create dynamic variables during the execution of the programs,

we need to use the relevant operations. On the other hand, dynamic variables

do not have a name and they are only identified by the address of the first

memory location in which they reside.

To do this we will need to use data which can contain references to dynamic

variables to allow them to be used. As these references are memory addresses,

their type will be that of a memory address or pointer, as its value will indicate

where the referenced variable is to be found.

In the following sections we will specifically look at everything pertaining

to dynamic variables and the data structures which can be constructed using

them.

GNUFDL • PID_00148427 9 Advanced programming in C. The development of efficient applications

2. Pointers

Pointers are variables which contain the memory addresses of other variables,

also known as references to other variables. Obviously, the data type will be

a memory location, making it an integer-compatible type. Even so, they have

peculiarities which we will look at later.

A pointer is declared by declaring the data type of the variable which will

contain addresses. We therefore use an indirection operator (an asterisk) or

that which can be read as "content of the address", which is same. In the

following examples we will declare several types of pointers:

int *ref_integer;

char *string;

other_t *pointer;

node_t *ap_node;

• In ref_integer , the content of the stored memory address is an integer

data type.

• In string , the content of the stored memory address is a character.

• In pointer , the content of the stored memory address is of the type

other_t.

• In ap_node, the content of the stored memory address is of the type

node_t.

A reference to the variable without the indirection operator is simply

the memory address it contains.

The type of pointer is determined by the data type held at the address. As such,

we can say, for example, that ref_integer is an integer-type pointer or that

it points "to" an integer type of data. It is also possible to declare pointers to

pointers etc.

In the following example we can observe that, to reference the value pointed

to by the address contained in a pointer, we need to use the "content of the

address of":

int a, b; /* two integer-type variables. */

int *ptr; /* a pointer to an integer. */

int **pptr; /* a pointer to a pointer to an integer. */

/* ... */

a = b = 5;

GNUFDL • PID_00148427 10 Advanced programming in C. The development of efficient applications

ptr = &a;

ptr = 20; / a == 20 */

ptr = &b;

pptr = &ptr;

**pptr = 40;/* b == 40 */

/* ... */

In the following figure we can appreciate how the program modifies

the variables as they are executed. Each vertical column represents the

modifications carried out by an instruction in the environment. To begin with

(the far-left column), we do not know the content of the variables:

Figure 5.

In the case of tuples we need to remember that they can also be accessed

using the indirection operator applied to the pointers which contain the initial

addresses. Access to their fields does not change:

struct student_s {

 string_t name;

 unsigned short dni, mark;

} student;

struct student_s *ref_student;

/* ... */

student.score = *ref_student.score;

/* ... */

To be clear, when accessing a field of a variable whose address is in a variable,

it is preferable to use the following:

/* ... */

student.mark = (*ref_student).mark;

/* ... */

If we want to emphasise the idea of the pointer, we can use the indirection

operator for tuples which is similar to an arrow pointing to the corresponding

tuple:

/* ... */

student.score = ref_student->score;

GNUFDL • PID_00148427 11 Advanced programming in C. The development of efficient applications

/* ... */

In the above examples, all the variables were static or automatic, but they are

primarily used to reference dynamic variables.

2.1. The relationship between pointers and vectors

Vectors in C are hypothetical concepts of the programmer, as an operator

(brackets) is used to calculate the initial address of an element within a vector.

When doing this, we need to remember that the names used to declare them

are in fact pointers to the first positions of the first elements of each vector.

The following declarations are therefore practically the same:

/* ... */

int real_vector[DIMENSION];

int *virtual_vector;

/* ... */

In the first, the vector has a specific dimension while in the second, the

virtual_vector is a pointer to an integer, meaning a variable which

contains the address of integer-type data. Even so, it is possible to use the

identifier of the first as a pointer to the second. In fact, it contains the address

of the first integer of the vector:

real_vector == &(real_vector[0])

It is very important not to modify the content of the identifier as it may

affect the reference to the whole vector!

Pointers are handled using a special type of arithmetic: adding and subtracting

pointers of the same type and integers are allowed. Adding and subtracting

integers will in fact be the addition and subtraction of multiples of integers as

they are multiplied by the size, in bytes, of those they point to.

Adding or subtracting the contents of pointers is very uncommon. More often,

they are decremented or incremented to point at a previous or subsequent

element respectively. The following example illustrates this special arithmetic.

This frees the programmer from having to think about how many bytes each

data type occupies:

/* ... */

int vector[DIMENSION], *ref_integer;

/* ... */

ref_integer = vector;

ref_integer = ref_integer + 3;

GNUFDL • PID_00148427 12 Advanced programming in C. The development of efficient applications

ref_integer = 15; / This is equivalent to vector[3] = 15 */

/* ... */

We will always have the sizeof operator, this will return the size in bytes

of the data type in the argument. The following example is therefore in fact

an increment of ref_integer where 3*sizeof(int) is added to the initial

content:

/* ... */

ref_integer = ref_integer + 3;

/* ... */

Therefore, in the case of vectors it is true that:

vector[i] == *(vector+i)

Meaning that the element found at location i is that which is found at the

memory location resulting from the addition of i*sizeof(*vector) to the

initial address indicated in the vector.

Note

The sizeof operator applies to the element pointed to by vector, as by applying it to
vector we would get the size, in bytes, which a pointer occupies.

In the following example we can see the relationship between pointers and

vectors in more detail. The program shown below takes a complete name as

an input and separates it into the name and surname.

#include <stdio.h>

#include <ctype.h>

typedef char phrase_t[256];

char *copy_word(char *phrase, char *word)

/* Copies the first word of the phrase to word. */

/* phrase : points to a character vector. */

/* word : points to a character vector. */

/* Returns the address of the last character read */

/* in the phrase. */

{

 while(*phrase!='\0' && isspace(*phrase)) {

 phrase = phrase + 1;

 } /* while */

 while(*phrase!='\0' && !isspace(*phrase)) {

 *word = *phrase;

 word = word + 1;

 phrase = phrase + 1;

 } /* while */

 *word = '\0';

GNUFDL • PID_00148427 13 Advanced programming in C. The development of efficient applications

 return phrase;

} /* word */

main(void) {

 phrase_t complete_name, name, surname1, surname2;

 char *position;

 printf("Name and surnames? ");

 gets(complete_name);

 position = copy_word(complete_name, name);

 position = copy_word(position, surname1);

 position = copy_word(position, surname2);

 printf(

 "Thank you Mr/Ms %s.\n",

 surname1

); /* printf */

} /* main */

Note

We will take another look at the relationships between pointers and vectors when dealing
with character strings later on.

2.2. Function references

References to functions are in fact the address of the first executable

instruction they contain. They can therefore be stored in function pointers.

The declaration of a pointer to a variable is done in a similar way to the

declaration of pointers to variables: we just need to include an asterisk in

its name. A pointer to a function which returns a real number, the result

of performing some kind of operation on the argument, is declared in the

following way:

float (*ref_function)(double x);

Note

The brackets surrounding the name of the pointer and the asterisk preceding it is required
so that it is not confused with the declaration of a function, the returned value of which
is a pointer to a real number.

We will use a program for the numerical integration of a certain set of

functions as an example. This program is similar to the one we looked at in

the previous unit but where the numerical integration function has a new

argument using the reference of the function for which we have to calculate

the integral:

/* Program: integrals.c */

GNUFDL • PID_00148427 14 Advanced programming in C. The development of efficient applications

#include <stdio.h>

#include <math.h>

double f0(double x) { return x/2.0; }

double f1(double x) { return 1+2*log(x); }

double f2(double x) { return 1.0/(1.0 + x*x);}

double integral_f(double a, double b, int n,

 double (*fref)(double x)

) {

 double result;

 double x, dx;

 int i;

 result = 0.0;

 if((a < b) && (n > 0)) {

 x = a;

 dx = (b-a)/n;

 for(i = 0; i < n; i = i + 1) {

 result = result + (*fref)(x);

 x = x + dx;

 } /* for */

 } /* if */

 return result;

} /* integral_f */

void main(void)

{

 double a, b;

 int n, fnum;

 double (*fref)(double x);

printf("Numerical integration of f(x).\n");

printf("Initial point of the interval, a = ? ");

scanf("%lf", &a);

printf("Final point of the interval, b = ? ");

 scanf("%lf", &b);

 printf("Number of divisions, n = ? ");

 scanf("%d", &n);

 printf("Function number, fnum = ?");

 scanf("%d", &fnum);

 switch(fnum) {

 case 1: fref = f1; break;

 case 2: fref = f2; break;

 default: fref = f0;

 } /* switch */

 printf(

 "Result, integral(f)[%g,%g] = %g\n",

 a, b, integral_f(a, b, n, fref)

); /* printf */

GNUFDL • PID_00148427 15 Advanced programming in C. The development of efficient applications

} /* main */

As we can observe, the main program is able to replace the function reference

assignments by calls to the same. This would make the program far more clear.

As we will see later on, this allows the function performing the numerical

integration to be stored in a library and to be used in any program.

GNUFDL • PID_00148427 16 Advanced programming in C. The development of efficient applications

3. The creation and destruction of dynamic variables

As we mentioned at the beginning of this unit, dynamic variables are those

which are created and destroyed during the execution of the program that

uses them. Conversely, the others are static or automatic variables which do

not need specific actions to be taken by the program in order to be used.

Before being able to use a dynamic variable we must reserve space for it using

the standard function (declared in stdlib.h) which locates and reserves a

space in the main memory of size number_bytes to allow it to contain the

various data of a variable:

void * malloc(size_t number_bytes);

As the function does not know the data type of the future dynamic variable, it

returns an empty pointer which needs to be coerced to the correct data type.

/* ... */

char *pointer;

/* ... */

pointer = (char *)malloc(31);

/* ... */

If it cannot reserve the space, it returns NULL.

It is often difficult to know exactly how many bytes each type of data occupies

and its size may also depend on the compiler and the machine being used. For

this reason we suggest to always use the sizeof. The above example should

therefore have been written in the following way:

/* ... */

pointer = (char *)malloc(31 * sizeof(char));

/* ... */

sizeof returns the number of bytes needed to contain the data type of

the variable or the data type it uses as the argument, except in the case

of matrices in which it returns the same value as for a pointer.

Note

The data type size_t
is simply an unsigned
integer-type which has been
given this name because it
shows sizes.

GNUFDL • PID_00148427 17 Advanced programming in C. The development of efficient applications

It will sometimes be necessary to adjust the size of the space reserved for a

dynamic variable (above all with vector types), either because there is no space

for new data or because a large part of the memory is being wasted. To this

end we can use the variable "reallocation" function:

void * realloc(void *pointer, size_t new_size);

The behaviour of the above function is similar to that of malloc: it returns

NULL if it has not been able to find a new location for the variable of the

required size.

When a dynamic variable is not needed any more it must be destroyed,

meaning the space it occupies must be freed so that other dynamic variables

can use it. To do this we will use the function free:

/* ... */

free(pointer);

/* ... */

As this function only frees up the space occupied, but does not affect the

content of the pointer, this will still have the reference to the dynamic variable

(its address) and the possibility of accessing a non-existent variable therefore

exists. To avoid this, we suggest assigning the pointer to NULL:

/* ... */

free(pointer);

pointer = NULL;

/* ... */

Any incorrect reference to the erased dynamic variable therefore will produce

an error which can easily be corrected.

GNUFDL • PID_00148427 18 Advanced programming in C. The development of efficient applications

4. Dynamic data types

Dynamic data types include those whose structure can be varied over the

course of the execution of a program.

Changes to the structure may only apply to the number of elements as is the

case with character strings, they may also apply to the relationships between

them as could be the case with a syntax tree.

Dynamic data types can be stored in static data structures but, as they are

groups of data, they must be vectors or, less commonly, multi-dimensional

matrices.

Note

Static data structures are, by definition, the opposite of dynamic data structures. In these,
neither the number of pieces of data nor their relationships change over the course of
the execution of the program. For example, a vector will always have a certain length
and all the elements, with the exception of the first and last, will have preceding and
subsequent elements.

When storing dynamic data structures in static structures it is advisable to

check whether we know the maximum number and the average number of

pieces of data it may contain. If these two values are similar, we could use a

static or automatic vector variable. If they are very different or we do not know

them, it is better to adjust the size of the vector to the number of elements

present in the data structure at a given time, as such we would store the vector

in a dynamic variable.

Dynamic data structures are commonly stored using dynamic variables. We

can therefore look at a dynamic data structure as a collection of dynamic

variables whose relationship is established using pointers. In this way we can

easily modify both the number of pieces of data in the structure (creating

or destroying the variables which contain them) and the structure itself by

changing the addresses contained in the pointers to the elements. In this case

the elements are usually tuples which are called nodes.

In the following sections we will look at the two cases, dynamic data structures

stored in static data structures and as collections of dynamic variables. The

first case deals with character strings as these are the most commonly used

dynamic data structures. The second deals with lists and their applications.

GNUFDL • PID_00148427 19 Advanced programming in C. The development of efficient applications

4.1. Character strings

Character strings are a special type of vector in which the elements are

characters. An end marker is also used (the NULL character or '\0') which

bounds the actual length of the string represented in the vector.

The following declaration would cause many problems due to the

non-inclusion of an end marker, as this rule must be respected in C when

using all standard functions for string processes.

char string[20] = { 'H', 'e', 'l', 'l', 'o' } ;

This would therefore need to be declared in the following way:

char string[20] = { 'H', 'e', 'l', 'l', 'o', '\0' } ;

The declaration of character strings initialised using text implies that the end

marker must always be added. The above declaration is therefore equivalent

to:

char string[20] = "Hello";

Although the format for representing character strings is standard in C, there

are no instructions or operators which work with strings: It is not possible to

make assignations or comparisons with strings, we need to use the standard

functions (declared in string.h) in order to handle strings.

int strlen (char *string);

char * strcpy (char *destination, char *source);

char * strncpy (char *destination, char *source, int char_num);

char * strcat (char *destination, char *source);

char * strncat (char *destination, char *source, int char_num);

char * strdup (char *origin);

char * strcmp (char *string1, char *string2);

char * strncmp (char *strn1, char *strn2, int char_num);

char * strchr (char *string, char character);

char * strrchr (char *string, char character);

The real length of a character string strn at a certain time can be obtained

using the following function:

strlen (strn)

The content of the character string pointed to by strn type to the strn9,

can be copied using strcpy(strn9, strn). If the source string is able to

be longer than the capacity of the destination vector, use strncpy(strn9,

strn, LENGTH_STRN9 – 1). In this last case we need to make sure the

GNUFDL • PID_00148427 20 Advanced programming in C. The development of efficient applications

resulting string does not contain a '\0' at the end. To resolve this, we need

to reserve the last character of the counted copy to put a '\0' by default. If

there is no space reserved for the string it would need to be done as follows:

/* ... */

char *strn9, strn[MAX_LENGTH];

/* ... */

strn9 = (char *) malloc(strlen(strn) + 1);

if(strn9 != NULL) strcpy(strn9, strn);

/* ... */

Note

In this way, strn9 is a string with the space adjusted to the number of characters of
the string stored in strn, this can be freed using free(strn9) when it is no longer
needed. The above procedure can be replaced by

/* ... */
strn9 = strdup(strn);
/* ... */

Strings are compared character by character starting with the first of the

two strings and continuing with the following ones as long as the difference

between the ASCII codes is 0. The function strcmp() returns the value of

the last difference. This will mean a negative value if the second string is

alphabetically greater than the first and positive in the opposite case, and 0

if they are the same. To understand this better we will look at a possible code

for the function for comparing strings.

int strcmp(char *string1, char *string2)

{

 while((*string1 != '\0') &&

 (*string2 != '\0') &&

 (*string1 == *string2)

) {

 string1 = string1 + 1;

 string2 = string2 + 1;

 } /* while */

 return *string1 - *string2;

} /* strcmp */

The function strncmp() does the same as strcmp() with the first char_num

characters.

Finally, although there is more, we will look at the functions for searching

characters in strings. These functions return the pointer to the searched

character or NULL if it is not found in the string:

• strchr() performs the search from the first character.

GNUFDL • PID_00148427 21 Advanced programming in C. The development of efficient applications

• strrchr() inspects the string starting from the right or the end.

Example

char *strchr(char *string, char character)
{
 while((*string != '\0') && (*string2 != character))
 {
 string = string + 1;
 } /* while */
 return string;
} /* strchr */

All of the above functions are declared in string.h and, therefore,

to use them we need to include this file in the source code of the

corresponding program.

In stdio.h there are also standard functions for operating with strings,

such as gets() and puts(), which are used for inputting and outputting

data which are character strings and which have already been described. It

also contains the declarations for sscanf() and sprintf() for reading and

writing formatted strings. These two last functions behave in exactly the same

way as scanf() and printf() with the exception that reading and writing

is done using a character string instead of using the standard input or output

device.

sprintf(

 char *destination, /* String to "print" to. */

 char *format

 [, list_of_variables]

); /* sprintf */

 int sscanf(/* Returns the number of variables */

 /* whose content has been updated. */

 char *origin, /* String being "read" from. */

 char *format

 [, list_of_&variables]

); /* sscanf */

When we use sprintf() we must check that the destination string

has enough space to contain the result of printing with the given

format.

When we use sscanf(), we always need to check that all the fields

have been read: the inspection of the origin string stops when it finds

the end marker, independently of the field specifiers indicated in the

format.

GNUFDL • PID_00148427 22 Advanced programming in C. The development of efficient applications

In the following example we will look at the code of a string conversion

function which represents a hexadecimal value (for example: "3D") to a

positive integer (following the above example: 3D(16 = 61) through the use of

the functions mentioned above. The first is used to prefix the string with "0x",

given that this is the format of hexadecimal numbers in C, and the second

is used to read the string obtained taking advantage of the fact that it reads

numbers in any standard C format.

unsigned hexaVal(char *hexadecimal)

{

 unsigned number;

 char *hexaC;

 hexaC = (char *) malloc(

 (strlen(hexadecimal) + 3) * sizeof(char)

); /* malloc */

 if(hexaC != NULL) {

 sprintf(hexaC, "0x%s", hexadecimal);

 sscanf(hexaC, "%x", &number);

 free(hexaC);

 } else {

 number = 0; /* The conversion has not been done!*/

 } /* if */

 return number;

} /* hexaVal */

Note

Remember the importance of freeing up the space of the dynamically created character
strings which are not going to be used. If you do not perform a free(hexaC), the
variable will continue to occupy space despite the fact that it can no longer be accessed, as
the address is contained in the pointer hexaC, this is automatic and is therefore destroyed
when execution of the function has ended. These types of errors can end up wasting a
lot of memory.

4.2. Lists and queues

Lists are one of the most commonly-used dynamic data types and consist

of homogenous sequences of elements with an unpredetermined size. As

with character strings, they can be stored in vectors as long as we know the

maximum length and the average length during execution. If we do not, we

use dynamic variables which are "linked", meaning variables which contain

pointers to others within the same dynamic data structure.

The advantage of representing a list using a vector is that it removes the need

for a pointer field to the next one. We need to underline the fact that it is

only possible to use it if it does not cause an excessive wastage of memory

and when the program does not perform frequent insertions and removals of

elements in any position of the list.

GNUFDL • PID_00148427 23 Advanced programming in C. The development of efficient applications

In this section we will look at a way of programming basic operations using

list type dynamic data structures through dynamic variables. In this case each

element of the list will be a node of the following type:

typedef struct node_s {

 int data;

 struct node_s *next;

} node_t, *list_t;

The node_t type corresponds to a node of the list and list_t is a pointer to

a node whose tuple has a next field, which is the pointer to another node,

and so on until the whole list of nodes is linked. These types of lists are called

simple�linked�lists as there is only one link between one node and the next.

Simple linked lists are suitable for algorithms which perform frequent

sequential run-throughs. For those which perform partial run-throughs in both

directions (forwards and backwards in the sequence of nodes) it is better to

use double�linked�lists, these are lists whose nodes contain pointers to the

next and the previous elements.

In both cases, if the algorithm performs insertions of new elements and

the destruction of unnecessary elements on a frequent basis, it can be more

convenient to have the first and last elements linked. These structures are

known as circular� lists and, usually, the first elements are marked with a

specific piece of data or a special field.

4.2.1. Fundamental list operations

A list of elements must allow us to perform the following operations:

• Accessing a specific node.

• Deleting an existing node.

• Inserting a new node.

In the following sections we will look at these three operations and we will

show the programs of the functions used to perform them on a simple linked

list.

To access a specific node it is essential to get its address. If we assume we want

to get the nth element of a list and return its address, the arguments needed by

the corresponding function will be the position of the element being searched

and the address of the first element of the list, this could be NULL if it is empty.

Evidently, the function will return the address of the nth node or NULL if it

does not find it:

node_t *nth_node(list_t list, unsigned int n)

GNUFDL • PID_00148427 24 Advanced programming in C. The development of efficient applications

{

 while((list != NULL) && (n != 0)) {

 list = list ->next;

 n = n - 1;

 } /* while */

 return list;

} /* nth_node */

In this case the first position will be considered to be position 0 similarly as

with vectors in C. It is essential to check that (list != NULL) is fulfilled

as, if it is not, it will not be able to execute list = list→next;: as it can

not access the next field of a node which does not exist.

To delete an element from a simple linked list we need to have the address of

the previous element as the next field of this one will need to be updated. To

do this we will need to extend the previous function so that it returns both

the address of the searched element and the previous element. As it needs to

return two pieces of data we will need to do it using a pass by reference: we

need to pass the addresses of the node pointers which contain the addresses

of the nodes:

void nth_pq_node(

 list_t list, /* Pointer to the first node. */

 unsigned int n, /* Position of the node we are looking for. */

 node_t **pref, /* Ref. pointer to previous node. */

 node_t **qref) /* Ref. pointer to current node. */

{

 node_t *p, *q;

 p = NULL; /* The one before the first does not exist */

 q = list;

 while((q != NULL) && (n != 0)) {

 p = q;

 q = q->next;

 n = n - 1;

 } /* while */

 *pref = p;

 *qref = q;

} /* nth_pq_node */

The program of the function that deletes a node will need to know

both the address (stored in q) and that of the possible previous element

(stored in the pointer p). In other words, we are tying to delete the

element following the one pointed to by p.

GNUFDL • PID_00148427 25 Advanced programming in C. The development of efficient applications

When writing these programs it is highly recommendable to create a chart

of the dynamic data structure, on which you should note the effects of the

various modifications to the same.

Therefore, in order to program this function we first need to establish the

general case on a chart of the structure from which we wish to remove a node

and then program it, always paying attention to the various exceptions which

the general case may have. These are usually relating to the treatment of the

first and last elements as these do not have a preceding or a following element

and, as a consequence, they do not follow the same rules as the others in the

list.

The following figure summarises the general procedure for removing the node

following node p:

Figure 6.

Note

We can obviously not remove a node when p == NULL. In this case neither (1) nor (2)
can be executed as they imply referencing non-existent variables. This is even more true
if p == NULL is fulfilled and we want to remove the first element, as this is the only one
which does not have a preceding element. We therefore need to "protect" the execution
of (1) and (2) using a conditional instruction which decides if the general case can be
performed or, conversely, the first element is deleted. Something similar happens with
(3) and (4), these can not be executed if q == NULL.

The function used to delete the node may be as follows:

int destroy_node(

 list_t *listref, /* Pointer to reference 1st node. */

 node_t *p, /* Pointer to previous node. */

 node_t *q) /* Pointer to node to be destroyed. */

GNUFDL • PID_00148427 26 Advanced programming in C. The development of efficient applications

{

 int data = 0 /* Default data value. */

 if(p != NULL) {

 /* q = p->next; (not necessary) */

 p->next = q->next;

 } else {

 if(q != NULL) *listref = q->next;

 } /* if */

 if(q!= NULL) {

 data = q->data;

 free(q);

 } /* if */

 return data;

} /* destroy_node */

When deleting the first element we need to change the address

contained in the list so that it points to the new first element, except

when q is also NULL).

To insert a new node whose address is in t, we will need to perform the

operations in the following figure:

Figure 7.

Note

In this case, the node t will be inserted after the node q. As we can see, it is necessary
that q != NULL to be able to perform an insertion.

The code for this function will be as follows:

void insert_next_node(

 list_t *listref, /* Pointer to reference 1st node. */

 node_t *q) /* Pointer to node at location. */

GNUFDL • PID_00148427 27 Advanced programming in C. The development of efficient applications

 nodo_t *t) /* Pointer to node to be inserted. */

{

 if(q!= NULL) {

 t->next = q->next;

 q->next = t;

 } else { /* The list is empty. */

 *listref = t;

 } /* if */

} /* insert_next_node */

For this function to be useful we will need to have a function which creates

the nodes of the list. In this case:

node_t *create_node(int data)

{

 node_t *noderef;

 noderef = (node_t *)malloc(sizeof(node_t));

 if(noderef != NULL) {

 noderef->data = data;

 noderef->next = NULL;

 } /* if */

 return noderef;

} /* create_node */

If we are inserting at a specific location we usually insert the new node at

the position preceding the one indicated; i.e. occupying the position of the

referenced node and so displacing the rest of the nodes one position "to the

right". The operations needed to do this in the general case are shown in the

following figure:

Figure 8.

GNUFDL • PID_00148427 28 Advanced programming in C. The development of efficient applications

Following the indications of the figure above, the code for this function will

be as follows:

void insert_node(

 list_t *listref, /* Pointer to reference 1st node. */

 node_t *p, /* Pointer to preceding node. */

 node_t *q) /* Pointer to node at location. */

 nodo_t *t) /* Pointer to node to be inserted. */

{

 if(p != NULL) {

 p->next = t;

 } else { /* A new first element is inserted. */

 *listref = t;

 } /* if */

 t->next = q;

} /* insert_node */

Therefore the insertion of a node at the nth position could be constructed as

follows:

bool insert_nth_list(

 list_t *listref, /* Pointer to reference 1st node. */

 unsigned int n, /* Position of the insertion node. */

 int data) /* Data to insert. */

{ /* Returns FALSE if it can not. */

 node_t *p, *q, *t;

 bool retval;

 t = create_node(data);

 if(t != NULL) {

 nth_pq_node(*listref, n, &p, &q);

 insert_node(listref, p, q, t);

 retval = TRUE;

 } else {

 retval = FALSE;

 } /* if */

 return retval;

} /* insert_nth_list */

We could also write a code for the function of the destruction of the nth

element of a list in the same way.

Normally the elements of a list will be more complex than integers and we will

need to replace the definition of the data type node_t with a more suitable

one.

GNUFDL • PID_00148427 29 Advanced programming in C. The development of efficient applications

The search criteria for nodes are usually more sophisticated than those

for the searching for a certain position. We can therefore use the above

functions as a model from which we can derive real applications.

4.2.2. Queues

Queues are in fact lists in which elements are inserted at one end and removed

from the other. In other words, they are lists in which insertion and deletion

operations are restricted to very specific cases. This allows us to manage them

much more effectively. It is therefore convenient to have a tuple which will

facilitate direct access to both the first and last elements. We can therefore

resolve the insertion and removal operations without the need to carry out

a search on the list.

This class of queues should therefore have a control tuple such as the

following:

typedef struct queue_s {

 node_t *first;

 node_t *last;

} queue_t;

Graphically:

Figure 9.

To demonstrate the two operations we will assume that the elements of the

queue are simple integers, meaning that the queue will be a list of nodes of

the node_t data type we have looked at before.

An insertion will therefore be as follows:

bool enqueue(queue_t *queueref, int dato)

/* Returns FALSE if the data can not be added.*/

{

 node_t *q, *t;

GNUFDL • PID_00148427 30 Advanced programming in C. The development of efficient applications

 bool retval;

 t = create_node(data);

 if(t != NULL) {

 t->next = NULL;

 q = queueref->last;

 if(q == NULL) { /* Queue empty: */

 queueref->first = t;

 } else {

 q->next = t;

 } /* if */

 queueref->last = t;

 retval = TRUE;

 } else {

 retval = FALSE;

 } /* if */

 return retval;

} /* enqueue */

And for removal:

bool dequeue(queue_t *queueref, int datoref)

/* Returns FALSE if the data can not be removed. */

{

 node_t *q;

 bool retval;

 q = queueref first;

 if(q!= NULL) {

 queueref->first = q->next;

 *datoref = destroy_node(&q);

 if(queueref->first == NULL) { /* Queue empty: */

 queueref->last = NULL;

 } /* if */

 retval = TRUE;

 } else {

 retval = FALSE;

 } /* if */

 return retval;

} /* dequeue */

The function destroy_node for the above deletion is as follows:

int destroy_node(node_t **pref)

{

 int dato = 0;

 if(*pref != NULL) {

 dato = (*pref) ->dato;

GNUFDL • PID_00148427 31 Advanced programming in C. The development of efficient applications

 free(*pref);

 *pref = NULL;

 } /* if */

 return dato;

} /* destroy_node */

Queues are often used when resources are shared by many users.

Example

• To manage a printer, the resource is the printer itself and the users are the computers
connected to it.

• To control an automatic queuing machine: the resource is the vendor and the clients
are the users.

Generally speaking, when we make insertions in a queue we need to be aware

of which element is being inserted, i.e. they are not always done at the end, the

element can be positioned according to its privileges over the others. In this

case we are talking about priority�queues. In these types of queues, removal is

always performed at the beginning but insertion implies positioning the new

element at the last position of the elements with the same priority.

There are certainly other more specialised types of list management and,

beyond lists, other types of data structures such as trees (a syntax tree for

example) and graphs (a road network for example). Unfortunately we do not

have time to go into these but we must bear them in mind if the problem data

requires their use.

GNUFDL • PID_00148427 32 Advanced programming in C. The development of efficient applications

5. Top-down program design

Remember that modular programming is based on dividing the code into

sub-programs which perform a specific function. In this unit we will

specifically look at how these sub-programs can be grouped according to

the tasks they are to perform and how to organise them to improve the

programming of the corresponding algorithm.

Complex algorithms are usually made up of programs with many lines of code.

Programming therefore needs to be done with great care so that the code is

readable and easy to maintain.

5.1. Description

The result of modular programming is a code made up of several programs of

a few lines which are linked together using calls. Each of these should be easy

to understand and therefore easy to maintain.

The top-down design technique is a technique for designing algorithms in

which the main algorithm is resolved by abstracting the details which are

then resolved by other algorithms in the same way. This means we are using

a higher level of abstraction and, for all those actions which can not be

directly translated to an instruction in the chosen programming language,

the corresponding algorithms are designed independently from the main one

following the same principle.

Top-down design consists of writing programs for algorithms with

fewer instructions and implementing non-primitive instructions with

functions whose programs follow the same rules as before.

In practice, this means we have to design algorithms so that they can be

programmed in a completely modular way.

5.2. Example

Top-down program design therefore consists of starting the program with a

main algorithm and then refining the "gross" instructions, converting them

to sub-programs with instructions which are more "refined". This is where we

get the concept of refinement. Obviously, this process will be complete when

there are no more "gross" instructions to refine.

Note

A primitive instruction
will be one which can
be programmed in a
programming language.

GNUFDL • PID_00148427 33 Advanced programming in C. The development of efficient applications

In this section we will look at a simple example of top-down design used for

resolving a fairly common problem in programming: the ordering of data for

easier viewing, for example.

This is one of the most studied problems in computer science and there are

several methods for resolving it. One of the simplest ways is to select the

element which should start the classification (for example, the largest or the

smallest if we are dealing with numbers), putting them in an ordered list and

repeating the process with the rest of the elements to be ordered. The main

program of this algorithm could be as follows:

/* ... */

list_t pending, ordered;

element_t element;

/* ... */

initialise_list(&ordered);

while(! list_is_empty(pending)) {

 element= extract_minimum_from_list(&pending);

 put_at_end_of_list(&ordered, element);

} /* while */

/* ... */

The above program does not have many primitive C instructions and must

therefore be refined. However its function can be easily understood. It is

important to understand that the "address of" operators (the & sign) in the

call parameters of the call functions indicate that they can modify the content

of the same.

The most difficult aspect of the refining process is usually identifying the

parts which should be described using primitive instructions, this means

determining the different levels of abstraction the algorithm should have and

therefore those of the corresponding program. We generally try to make sure

that the program reflects the algorithm it came from to the greatest extent

possible.

It is a common mistake to think that those operations which only require

one or two primitive instructions can never be considered to be non-primitive

instructions.

One rule which is easy to adopt is that all operations which are carried out

with an abstract data type are equally abstract, meaning they are written using

non-primitive instructions (functions).

GNUFDL • PID_00148427 34 Advanced programming in C. The development of efficient applications

6. Abstract data types and associated functions

The best way to implement top-down programming is to program all of the

operations which can be performed with each of the abstract data types which

are to be used. This in fact means creating a virtual machine to execute those

instructions of the algorithm in such a way that a language will have all the

operations needed for the machine to be able to process it, these are then

obviously translated to operations in the language of the real machine which

will carry out the processing.

In the example of the ordering algorithm above there are two abstract data

types (list_t and element_t) for which we need, at least, the following

operations:

void initialise_list(list_t *ref_list);

bool list_is_empty(list_t list);

element_t extract_minimum_from_list(list_t *ref_list);

void put_at_end_of_list(list_t *rlst, element_t e);

As we can see, there are no operations affecting the data type element_t.

However, we can be sure that the program will make use of them (data

reading, insertion of the same in the list, comparisons between elements,

writing results etc.) in another section. We will therefore need to program the

corresponding operations. In particular, if we look at the following code we

can see that it contains functions to handle data of the type element_t:

element_t extract_minimum_from_list(list_t *ref_list)

{

 ref_node_t current, minimum;

 bool is_lower;

 element_t small;

 start_of_list(ref_list);

 if(list_is_empty(*ref_list)) {

 initialise_element(&small);

 } else {

 minimum = ref_node_of_list(*ref_list);

 small = element_in_ref_node(*ref_list, minimum);

 advance_position_in_list(ref_list);

 while(!end_of_list(*ref_list)) {

 actual = ref_node_of_list(*ref_list);

 is_lower = compare_elements(

 element_in_ref_node(*ref_list, current), small

); /* compare_elements */

 if(is_lower) {

GNUFDL • PID_00148427 35 Advanced programming in C. The development of efficient applications

 minimum = current;

 small = element_in_ref_node(*ref_list, minimum);

 } /* if */

 advance_position_in_list(ref_list);

 } /* while */

 show_element(small);

 remove_from_list(ref_list, minimum);

 } /* if */

 return small;

} /* extract_minimum_from_list */

As we can see from the code above, at least two operations are required for

data of the type element_t:

initialise_element();

compare_elements();

Four more operations are necessary for lists:

start_of_list();

end_of_list();

advance_position_in_list();

remove_from_list();

We have also added the data type ref_node_t to have the references of

the nodes in the lists and two operations: ref_node_of_list to obtain the

reference of a certain node in the list and element_in_ref_node to obtain

the element which is stored in the node indicated.

This shows that progressive refinement serves to ascertain which operations

are needed for each data type and also shows that lists have a different level

of abstraction which is higher than that of the elements.

To complete the programming of the ordering algorithm we need to develop

all the functions associated with the lists and then those associated with the

elements. However the first thing we need to do is to determine the abstract

data types which will be used.

Lists can be created using vectors or dynamic variables depending on the types

of algorithms being used. In the ordering example it will depend in part on the

general criteria applied for making the decision and also on the characteristics

of the algorithm itself. Generally we will use vectors if they do not cause too

much wastage, but we also need to bear in mind that the algorithm we are

using can only be applied to the classification of modest amounts of data (a

few hundred at most).

GNUFDL • PID_00148427 36 Advanced programming in C. The development of efficient applications

If we choose the first option, the data type list_t would be:

#define MAXIMUM_LENGTH 100

typedef struct list_e {

 element_t node[MAXIMUM_LENGTH];

 unsigned short position; /* Current access position. */

 unsigned short quantity; /* Length of the list. */

} list_t;

We will also need to define the data type for node references:

typedef unsigned short ref_node_t;

The other operations required will be those corresponding to the following

functions:

void initialise_list(list_t *ref_list)

{

 (*ref_list).quantity = 0;

 (*ref_list).position = 0;

} /* initialise_list */

bool list_is_empty(list_t list)

{

 return (list.quantity == 0);

} /* list_is_empty */

bool end_of_list(list_t list)

{

 return (list_position == list.quantity);

} /* end_of_list */

void start_of_list(list_t *list_ref)

{

 list_ref->position = 0;

} /* start_of_list */

ref_node_t ref_node_of_list(list_t list)

{

 return list.position;

} /* ref_node_of_list */

element_t element_in_ref_node(

 list_t list,

 ref_node_t refnode)

{

 return list.node[refnode];

GNUFDL • PID_00148427 37 Advanced programming in C. The development of efficient applications

} /* element_in_ref_node */

void advance_position_in_list(list_t *list_ref)

{

 if(!end_of_list(*list_ref)) {

 (*list_ref).position = (*list_ref).position + 1;

 } /* if */

} /* advance_position_in_list */

element_t remove_from_list(

 list_t *ref_list,

 ref_node_t refnode)

{

 element_t removed;

 ref_node_t pos, last;

 if(list_is_empty(*ref_list)) {

 initialise_element(&removed);

 } else {

 removed = (*ref_list).node[refnode];

 last = (*ref_list).quantity - 1;

 for(pos = refnode; pos < last; pos = pos + 1) {

 (*ref_list).node[pos] = (*ref_list).node[pos+1];

 } /* for */

 (*ref_list).quantity = (*ref_list).quantity - 1;

 } /* if */

 return removed;

} /* remove_from_list */

element_t extract_minimum_from_list(list_t *ref_list);

void put_at_end_of_list(

 list_t *ref_list,

 element_t element)

{

 if((*ref_list).quantity < MAXIMUM_LENGTH) {

 (*ref_list).node[(*ref_list).quantity] = element;

 (*ref_list).quantity = (*ref_list).quantity +1;

 } /* if */

} /* put_at_end_of_list */

If we examine the above functions associated with the data type list_t, we

will see that they only need one operation using the data type element_t:

compare_elements. To complete the ordering program we now only need to

define the data type and the comparison operation.

GNUFDL • PID_00148427 38 Advanced programming in C. The development of efficient applications

While list operations on vectors are generic, all those affecting elements will

depend on the information whose data we wish to order.

For example, let us suppose that we want to order the results of an exam by

a national identity number, then the data type for the elements could be as

follows:

typedef struct element_s {

 unsigned int national_identity_number;

 float score;

} data_t, *element_t;

The comparison function would be as follows:

bool compare_elements(

 element_t lower,

 element_t higher)

{

 return (lower->national_identity_number < higher->national_identity_number);

} /* compare_elements */

The initialisation function would be as follows:

void initialise_element(element_t *ref_elem)

{

 *ref_elem = NULL;

} /* initialise_element */

Note that the elements are in fact pointers to dynamic variables. This will

greatly simplify the code of the operations on higher levels of abstraction

despite the fact that the program will need to construct and destroy them.

However, it is important to remember that we always need to prepare

functions for the creation, destruction, copying and duplication of each of the

data types for which dynamic variables exist.

The copy and duplication functions are necessary as a simple

assignment means copying the address of a variable to another pointer,

meaning we would have two references to the same variable instead of

two different variables with the same content.

GNUFDL • PID_00148427 39 Advanced programming in C. The development of efficient applications

Example

Look at the difference between these two functions:

/* ... */
element_t original, other, copy;
/* ... */
other = original; /* Copy of pointers. */
/* the address stored in 'other'
 is the same as that contained in 'original'
*/

/* ... */
copy_element(original, copy);
other = duplicate_element(original);
/* the addresses stored in 'copy' and in 'other'
 are different from that contained in 'original'
*/

Copying content should be done using a specific function and if the variable

which should contain the copy has not been created, we will obviously need

to create it first by making a duplicate.

To summarise, when we program an algorithm using top-down design, we will

need to program the creation, destruction and copy functions for each of the

abstract data types it contains. We will also need to program the functions

for all operations used with each data type to reflect the different levels of

abstraction present in the algorithm. This will allow us to write intelligible

and easy-to-handle code although we may need to write a few more lines.

GNUFDL • PID_00148427 40 Advanced programming in C. The development of efficient applications

7. Header files

It is common that several programming teams collaborate on the writing of a

program although this is sometimes more a wish than a reality. In small and

medium-sized businesses the team will often be made up of just one person

and sometimes the number of teams will be reduced from several to just one.

However, the following sentence is true: programs must be created using parts

of other programs if we are using good programming practices. The re-use of

programs does not just reduce development time but also means we can be

sure that the components of the program have been proven to work.

All this is especially true for free software in which programs are

usually produced by groups of diverse programmers who are not formally

coordinated: a programmer may have used code created by other programs

for applications which it was not originally intended for.

To be able to use a certain code we will need to remove the implementation

data, indicating only the data type for which it is intended and which

operations can be performed with the corresponding variables. We therefore

need to have a file in which the abstract data types are defined and where we

declare the functions which are provided for the variables of the same. These

files are known as header files as they appear at the beginning of the source

code of the functions whose declarations or headers have been included in

the same.

Header files will tell us all we need to know about the abstract data type

and the functions used to manage it.

7.1. Structure

Header files have the extension ".h" and the content must be organised in such

a way that it is easy to read. First we include a comments section which states

the nature of the content and, above all, the functionality of the code in the

corresponding ".c" file. We then follow the standard structure of a typical C

program: the inclusion of header files, the definition of symbolic constants

and, lastly, the declaration of the functions.

The definition must always be in the ".c" file.

GNUFDL • PID_00148427 41 Advanced programming in C. The development of efficient applications

The following header file is used to operate with complex numbers and is a

good example:

/* File: complex.h */

/* Content: Functions for operating with complex */

/* numbers of type (X + iY) in which */

/* X is the real part and Y the imaginary one. */

/* Version: 0.0 (original) */

#ifndef _COMPLEX_NUMBERS_H_

#define _COMPLEX_NUMBERS_H_

#include <stdio.h>

#define PRECISION 1E-10

typedef struct complex_s {

 double real, imaginary;

} *complex_t;

complex_t new_complex(double real, double imaginary);

void delete_complex(complex_t complex);

void print_complex(FILE *file, complex_t complex);

double complex_module(complex_t complex);

complex_t opposed_complex(complex_t complex);

complex_t sum_complexes(complex_t c1, complex_t c2);

/* etcétera */

#endif /* _COMPLEX_NUMBERS_H_ */

The definitions of types and constants and function declarations have been

included as the body of the preprocessor command #ifndef ... #endif. This

command asks if a certain constant has been defined and, if it hasn't, the

content of the file up to the end marker is transferred to the compiler. The

first command of the body of this conditional command is specifically there

to define the constant _COMPLEX_NUMBERS_H_ to prevent a new inclusion of

the same file from generating the same source code for the compiler (it is not

required if it has already been processed once).

These so-called conditional�compilation�commands of the preprocessor allow

us to decide if a certain tranche of source code is to be supplied to the compiler

or not. These are summarised in the following table:

Table 8.

Command Meaning

#if expression The following lines are compiled if expression ≠ 0.

#ifdef SYMBOL The following lines are compiled if SYMBOL is defined.

#ifndef SYMBOL The following lines are compiled if SYMBOL is not defined.

GNUFDL • PID_00148427 42 Advanced programming in C. The development of efficient applications

Command Meaning

#else Finalises the compiled block if the condition is fulfilled and initiates the block to be compiled if not.

#elif expression Chains an else with an if.

#endif Indicates the end of the conditional compilation block.

Note

A defined symbol (for example: SYMBOL) can be cancelled using:

#undef SYMBOL

and from this moment on it is considered to be not defined.

The forms:

#ifdef SYMBOL
#ifndef SYMBOL

are abbreviations of:

#if defined(SYMBOL)
#if !defined(SYMBOL)

respectively. The function defined can be used in more complex logical expressions.

To finish off this section, it only remains to say that the source code file should

obviously include its header file:

/* File: complex.c */

/* ... */

#include "complex.h"

/* ... */

Note

Inclusion is done by indicating the file between inverted commas instead of angle
brackets ("greater than" and "less than" symbols) as it is assumed that the included file
is to be found in the same directory as the file which includes the inclusion directive.
Angle brackets should be used if we want the preprocessor to examine the set of access
paths to standard inclusion file directories, as is the case with stdio.h, for example.

7.2. Example

In the example of ordering by selection, we would have a header file for

each abstract data type and the corresponding files containing the C code,

obviously. The following figure shows a diagram of the relationships between

these files:

GNUFDL • PID_00148427 43 Advanced programming in C. The development of efficient applications

Figure 10.

Each source code file can be compiled independently. This means in this

example there would be three compilation units. Each of these could be

developed independently of the others. The only aspect we must respect in

terms of units which have header files is that the function declarations and

data types are not modified. Therefore the other units which use them should

not modify their calls and will therefore not need to be changed or compiled.

It is important to remember there can only be one unit with a main function

(the one corresponding to order.c, in the above example). The others should

be compendiums of functions associated with a certain type of abstract data.

The use of header files also allows us to change the code of a function without

having to change the code of any of the programs that use it. It is clear that the

change will not affect the "contract" established in the corresponding header

file.

The content of the header file describes the functionality provided for a

certain type of abstract data and, with this description, it is committed

to maintain it independently of how it appears in the associated code.

To illustrate this idea we can imagine that, in this example, it is possible to

change the code of the functions which work with the lists to make them

dynamic, without changing the contract acquired in the header file.

We will now look at the header file for lists in the case of ordering:

/* File: list.h */

GNUFDL • PID_00148427 44 Advanced programming in C. The development of efficient applications

#ifndef _LIST_VEC_H_

#define _LIST_VEC_H_

#include <stdio.h>

#include "bool.h"

#include "element.h"

#define MAXIMUM_LENGTH 100

typedef struct list_e {

 element_t node[MAXIMUM_LENGTH];

 unsigned short position; /* Current access position. */

 unsigned short quantity; /* Length of the list. */

} list_t;

void initialise_list(list_t *ref_list);

bool list_is_empty(list_t list);

bool end_of_list(list_t list):

void start_of_list(list_t *list_ref);

ref_node_t ref_node_of_list(list_t list);

element_t element_in_ref_node(

 list_t list,

 ref_node_t refnode

);

void advance_position_in_list(list_t *list_ref);

element_t extract_minimum_from_list(list_t *ref_list);

void put_at_end_of_list(

 list_t *ref_list,

 element_t element

);

#endif /* _LIST_VEC_H_ */

As we can see, we change the extraction method for the minimum element

without needing to modify the header file nor the call in the main program.

However, a change in the data type used to implement lists using dynamic

variables, for example, would involve re-compiling all of the units which use

them, although the headers of the functions are not modified. In these cases

it is useful to maintain the contract with respect to these as this will make it

unnecessary having to modify the source code of the units which use them.

GNUFDL • PID_00148427 45 Advanced programming in C. The development of efficient applications

8. Libraries

Libraries of functions are in fact just compilation units. As such, each one will

have a header file and a source code file. To prevent the repeated compilation

of libraries the source code has already been compiled (files with the extension

".o") and they only need to be linked to the main program.

Function libraries are different from compilation units in that they only

incorporate those functions which are needed in the main program: those

which are not used are not included. Compiled files which allow this option

have the extension ".l".

8.1. Creation

To obtain a compilation unit in which only the functions used are included

in the executable program, we need to compile it to obtain an object type file

in which the executable code is not linked.

$ gcc -c -o library.o library.c

We can assume that the file library.c will include the appropriate header

file as indicated.

Once the object file has been generated we need to include it in an archive

(with the extension ".a") of files of the same type (it could be the only one

if the library only has a single compilation unit). In this context "archives"

are collections of object files contained in a single file with an index to locate

them and, above all, to determine which parts of the object code correspond

to which functions. To create an archive we need to execute the following

command:

$ ar library.a library.o

To construct the index (the table of symbols and locations) we need to execute

the command:

$ ar -s library.a

or:

$ ranlib library.a

GNUFDL • PID_00148427 46 Advanced programming in C. The development of efficient applications

The archive management command ar also allows us to list the object files

it contains and to add or replace new or modified files, to update them

(replacement is performed if the modification date is later than the date of

inclusion in the archive) and also to remove them if they are not required.

These are done using the following commands respectively:

$ ar -t library.a

$ ar -r new.o library.a

$ ar -u updateable.o library.a

$ ar -d obsolete.o library.a

With the information from the table of symbols the linker mounts an

executable program using only those functions which are referenced. In other

ways archives are similar to single object code files.

8.2. Use

Library functions are used in exactly the same way as the functions of any

other compilation unit.

We only need to include the appropriate header file and incorporate the

required function calls within the source code.

8.3. Example

The ordering example included a compilation unit for lists. As lists are a

commonly-used dynamic data type it is useful to have a library of functions

for operating with them. This will mean we do not need to program them

again later on.

To transform the list unit into a function library we need to make sure that

the data type does not depend on the application in any way. If it does we will

need to compile the lists unit for each new program.

In the example, the lists contain elements of the type element_t, which was

a pointer to data_t. In general, lists can have elements which are pointers

to any data type. Whichever they are, they are all memory addresses. For this

reason, in respect of lists, the elements will be a void type which the user of

the function library will need to define. The compilation unit for lists will

therefore include:

typedef void *element_t;

Therefore, to carry out the smallest element extraction function we will need

to know which function to call to perform the comparison. We will therefore

need to add another parameter for the comparison function:

GNUFDL • PID_00148427 47 Advanced programming in C. The development of efficient applications

element_t extract_minimum_from_list(

 list_t *ref_list,

 bool (*compare_elements)(element_t, element_t)

); /* extract_minimum_from_list */

The second argument is a pointer to a function which takes two elements as

parameters (we do not need to name the formal parameters) which returns

a logic value of the type bool. In the source code for the definition of the

function the call will be made in the following way:

/* ... */

is_lower = (*compare_elements)(

 element_in_ref_node(list, current),

 small

); /* compare_elements */

/* ... */

The rest does not need to be changed at all.

the decision to transform a compilation unit of a program in a library will

therefore basically depend on two factors:

• The data type and the operations must be able to be used in other

programs.

• Rarely will all the functions in a unit be used.

GNUFDL • PID_00148427 48 Advanced programming in C. The development of efficient applications

9. The tool make

The compilation of a program normally involves compiling some of its units

and then linking them all to the library functions in order to mount the final

executable program. Therefore, as well as carrying out a series of commands,

we also need to know which files have been modified.

The make tools allow us to establish the relationships between files in order

to determine which ones depend on others. When it detects that one of the

files has a modification time and data which is earlier than one of the ones it

depends on, the command is executed to regenerate them.

We therefore do not need to worry about which files we need to generate and

which do not need to be updated. We also avoid the need to have execute a

series of individual commands, which could be considerable in number in a

large program.

The purpose of make tools is to automatically determine which parts

of a program need to be recompiled and then to execute the pertinent

commands.

The gmake tool (or simply make) is a make utility from GNU

(www.gnu.org/software/make) which deals with the issues mentioned above.

To use it we need to have a file which, by default, is called makefile. We can

indicate a file with another name if we invoke it using the option -f:

$ make -f targets_file

9.1. File makefile

In the file makefile we need to specify the targets (usually files to be

constructed) and the files they depend on (the pre-requisites for fulfilling the

targets). For each target we will need to construct a rule whose structure will

be as follows:

Syntax of a rule:

target : file1 file2 ... fileN

 command1

 command2

 ...

 commandK

GNUFDL • PID_00148427 49 Advanced programming in C. The development of efficient applications

The # symbol is used to introduce a comments line. Every rule requires that we

indicate what the target is, followed by a colon, followed by the files it depends

on. The following lines include the commands which need to be executed. If

you want to continue a line it should end with a line feed preceded by the

escape character or backslash (\).

Using the exam results ordering program we could construct a makefile such

as the one shown below to simplify updating of the final executable code:

Compilation of the ordering program:

classifies : orders.o marks.o list.a

 gcc -g -o classifies orders.o marks.o list.a

orders.o : orders.c

 gcc -g -c -o orders.o orders.c

marks.o : marks.c marks.h

 gcc -g -c -o marks.o marks.c

list.a : list.o

 ar -r list.a list.o ;

 ranlib list.a

list.o : list.c list.h

 gcc -g -c -o list.o list.c

The make tool processes the previous file revising the pre-requisites of the first

target and, if these are also targets of other rules, it will proceed in the same

way as for the others. Any terminal prerequisite (one which is not a target of

another rule) which was modified after the target affected by it will cause a

series of specific commands to be executed in the following lines of the rule.

It is possible to specify more than one target but make will only examine the

rules of the first end target it finds. If we want it to process other targets we

will need to indicate them in the invocation.

We can also have targets without prerequisites in which case the commands

associated with the rule in which they appear will always be executed.

It is possible to have a target which deletes all the object files which are no

longer needed.

Example

Using the above example it would be possible to clean any unnecessary files from the
file directory by adding the following text to the end of the makefile:

Cleaning the working directory:
clean :
 rm -f orders.o marks.o list.o

To achieve this target we just need to add the command:

$ make clean

Note

The first of these lines must
begin with a tab character.

GNUFDL • PID_00148427 50 Advanced programming in C. The development of efficient applications

We can also indicate several targets with the same prerequisites:

Compilation of the ordering program:

all clean optimal : classifies

clean : CFLAGS := -g

optimal : CFLAGS := -O

classifies : orders.o marks.o list.a

 gcc $(CFLAGS) -o classifies orders.o marks.o list.a

rest of the file ...

Note

From the above file we can see the following:

• If we invoke make without an argument, it will update the target all (the first one
it finds), which depends on updating the secondary target classifies.

• If we specify the target clean or optimal, we will need to check that the two rules
are consistent: the first indicates that to achieve this we need to update classifies
and the second that we need to assign CCFLAGS with a value.

Given that make first analyses the dependencies and then executes the

appropriate commands, the result will be that the mounting of compiles will be

done with the content assigned to the variable CCFLAGS in the preceding rule:

accessing the content of a variable is done using the corresponding operator

which is represented by the dollar symbol.

In the above example we can appreciate that the usefulness of make goes much

further than the scope we have looked at here and also that makefile has many

ways of expressing rules more powerfully. All the same, we have still looked

at their main characteristics from a programming point of view and we have

also looked at some important examples.

GNUFDL • PID_00148427 51 Advanced programming in C. The development of efficient applications

10.Relation with the operating system. passing
parameters to programs

Programs are translated into machine code so that they can be executed.

However, many operations relating to input and output devices and storage

devices (disks and memory among others) are translated to call functions of

the operating system.

One of the functions of the operating system is precisely to allow the

execution of other programs on the machine and software in particular.

To do this, it provides the user with certain mechanisms for selecting the

applications to be executed. Most of these are currently graphic user interfaces.

Even so, we still have the text environments of the command interpreters,

which are commonly known as shells.

When using shells to execute programs (some of these being utilities of the

actual system and some of them applications) we need to supply the name of

the corresponding executable file. It is also common for one program to be

invoked by another.

In fact, the main function in C programs can have different arguments. In

particular, there is a convention that the first parameter is the number of

arguments passed to it through the second, which will be a character string

vector. To clarify how the parameter passing procedure works, we can use the

following program as an example when we invoke it from a shell with a certain

number of arguments:

/* File: args.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

 int i;

 printf("Num arguments, argc = %i\n", argc);

 for(i = 0; i < argc; i = i + 1) {

 printf("Argument argv[%i] = \"%s\"\n", i, argv[i]);

 } /* for */

 return argc;

} /* main */

If we invoke it with the following command the result will be as shown below:

$ args -test number 1

Num arguments, argc = 4

GNUFDL • PID_00148427 52 Advanced programming in C. The development of efficient applications

Argument argv[0] = "args"

Argument argv[1] = "-test"

Argument argv[2] = "number"

Argument argv[3] = "1"

$

It is important to bear in mind that that the invocation of the argument is

taken to be argument 0 of the command. Therefore, in the above program,

the invocation in which three parameters are given to the program becomes

a call to the function main which also includes the text used to invoke the

actual program, this is the first character string of the arguments vector.

We can check the value returned by main to determine if an error occurred

during the execution process or not. The general convention is that the value

returned should be the corresponding error code, or 0 if no errors occurred.

Note

In the source code of the function we can use the constants EXIT_FAILURE and
EXIT_SUCCESS, these are defined in stdlib.h and show the return value with or
without errors respectively.

The following example shows a program which gives the sum of all the

parameters present in the invocation. To do this, it uses the function atof,

declared in stdlib.h, which converts text strings to real numbers. If the

string does not represent a number, it will return a zero:

/* File: sum.c */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 float sum = 0.0;

 int pos = 1;

 while(pos < argc) {

 sum = sum + atof(argv[pos]);

 pos = pos + 1;

 } /* while */

 printf(" = %g\n", sum);

 return 0;

} /* main */

Note

In this case, the program will
always return the value 0 as
there are no execution errors.

GNUFDL • PID_00148427 53 Advanced programming in C. The development of efficient applications

11.The execution of functions in the operating system

An operating system is a piece of software which allows the applications

executed on a computer to be abstracted from the workings of the machine.

This means that applications can run on a virtual machine which is able to

perform operations which the real machine cannot understand.

What is more, the fact that the programs are defined in terms of routines (or

functions) provided by the OS increases their portability, or their ability to

be executed on different machines. This makes them fairly independent from

the machine, but obviously not from the OS.

In C, many of the standard library functions use OS routines to perform their

tasks. Among these functions are data and file input and output and memory

management (dynamic variables above all).

In general, all the standard library functions in C have the same header and

the same behaviour, independently of the operating system, however some of

them do depend on the operating system: there are some differences between

Linux and Microsoft. Fortunately, these are easy to detect as the functions

which are related to a specific operating system are declared in specific header

files.

It is almost always more appropriate to execute the commands of the shell of

the operating system instead of directly executing the functions. Among other

things, this allows the corresponding program to be described at a higher level

of abstraction meaning that we can take advantage of the fact that it is the

command interpreter itself which fills in the details needed for the task to be

completed. In general these deal with the execution of internal commands of

the shell itself or those which use its resources (search paths and environment

variables among others) to execute other programs.

To be able to execute a shell command we only need to give the system

function the character string which describes it. The value returned is the

return code of the command executed, or 1 if there was an error.

In Linux, system(command) executes /bin/sh –c command; meaning it

uses sh as the command interpreter. These will therefore have to follow the

syntax of the same.

The following program shows the code returned by the execution of a

command, which must be inserted between inverted commas as the argument

of the program.

GNUFDL • PID_00148427 54 Advanced programming in C. The development of efficient applications

/* File: execute.c */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 int code;

 if(argc == 2) {

 code = system(argv[1]);

 printf("%i = %s\n", code, argv[1]);

 } else {

 printf("Use: execute \"command\"\n");

 } /* if */

 return 0;

} /* main */

Even though it is simple the above program gives us an idea of how to use

the function system.

The set of routines and services provided by the operating system does more

than just support data input and output functions and memory and file

management, it also allows us to launch the execution of programs within

others. In the following section we will look into the subject of program

execution in more depth.

GNUFDL • PID_00148427 55 Advanced programming in C. The development of efficient applications

12.Process management

Today's operating systems, as well as being able to do all the things we have

seen, are able to execute a variety of programs on the same machine at the

same time. Obviously, this is only possible if they are executed on different

processors or if they are executed either sequentially or alternately on the same

processor.

Normally, despite the fact that operating systems are able to manage a

machine with several processors, there will be more programs to execute than

there are resources to do so. For this reason, we will always need to plan the

execution of a specific set of programs on a single processor. Planning can be:

• Sequential. The following program is executed once the first has finished

(also known as batch execution).

• Interleaved. Each program has a certain amount of time in which to carry

out part of its execution flow of instructions, at the end of this period a

part of another program is executed.

In this way, we can execute several programs during the same time period and

it will look as if the programs were being executed simultaneously.

By using the services (functions) provided by the OS in respect of the

execution of software, we can, among other things, execute it when it is

disassociated from the standard input/output and/or part of the execution

flow of instructions on several parallels.

12.1. Definition of a process

With respect to the operating system, each instruction flow it must manage is

a process. It will therefore share the execution between the various processors

in the machine and over the time required to carry out the tasks progressively.

There will however be some processes which are split into two parallel

processes, meaning that from this point on the program will consist of two

different processes.

To start with, each process will have a standard data input and output

associated with it, but which can be disassociated for the continuation of the

program in the background, this is common in background processes which

we will look at in the next section.

GNUFDL • PID_00148427 56 Advanced programming in C. The development of efficient applications

Processes which share the same environment or state, with the obvious

exception of the reference to the next instruction, are called threads, while

those which have different environments are simply called processes.

A program can therefore organise its code in such a way that it performs its

task using several parallel instruction flows, whether these are single threads

or complete processes.

12.2. Background processes

A background process is one which is executed indefinitely on a machine.

They are usually processes which deal with the automated management of

data input and output and therefore users do not really interact with them.

Many of the applications which work with the client-server model are

constructed using background processes for the server and with interactive

processes for the clients. Some clear examples of these applications are those

relating to the Internet: The clients are programs, such as a browser or an email

manager, and the servers are programs which deal with the requests of the

corresponding clients.

In Linux, background processes are known, dramatically, as daemons because,

although they are not visible to users as they do not interact with them

(especially not through the standard terminal), they do exist: daemons are

"spirits" of the machine, users can not see them but are able to perceive their

effects.

To create a function we just need to call the function daemon, declared in

unistd.h, using the appropriate parameters. The first argument indicates

if the working directory has not changed and the second, if the standard

input/output terminal has not been disassociated; in other words, a common

call would have to be as follows:

/* ... */

if(daemon(FALSE, FALSE)) == 0) {

 /* body */

} /* if */

/* rest of the program, whether it has been created or not. */

Note

This call makes the body of the program a daemon which works in the root directory (as
if we had done a cd /) and which is disassociated from the standard inputs and outputs
(redirected to the null device in fact: /dev/null). The function returns the error code
0 if everything worked.

Note

Literally speaking, a daemon
is a malign spirit, although
we are assuming that these
processes are not.

GNUFDL • PID_00148427 57 Advanced programming in C. The development of efficient applications

12.2.1. Example

To illustrate the function of daemons we will look at a program which tells the

user that a certain amount of time has passed. To do this we will need to invoke

the program with two parameters: one to indicate the hours and minutes

which must have passed before advising the user and another containing the

associated text. In this case the program becomes a non-disassociated daemon

of the standard input/output terminal given that the message will appear on

the same.

/* File: alarm.c */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include "bool.h"

int main(int argc, char *argv[])

{

 unsigned int hours;

 unsigned int minutes;

 unsigned int seconds;

 cha *message, *separator;

 if(argc == 3) {

 separator = strchr(argv[1], ':');

 if(separator != NULL) {

 hours = atoi(argv[1]);

 minutes = atoi(separator+1);

 } else {

 hours = 0,

minutes = atoi(argv[1]);

 } /* if */

 seconds = (hours*60 + minutes) * 60;

 message = argv[2];

 if(daemon(FALSE, TRUE)) {

 printf("The alarm can not be installed :-(\n");

 } else {

 printf("Alarm in %i hours and %i minutes.\n",

 hours, minutes

); /* printf */

 printf("Do $ kill %li to stop it.\n",

 getpid()

); /* printf */

 } /* if */

 sleep(seconds);

 printf("%s\007\n", message);

GNUFDL • PID_00148427 58 Advanced programming in C. The development of efficient applications

 printf("Alarm stopped.\n");

 } else {

 printf("Use: %s hours:minutes \"message\"\n", argv[0]);

 } /* if */

 return 0;

} /* main */

The reading of the input parameters occupies a large part of the code. What

we should look at more carefully is the extraction of the hours and minutes,

to do this it looks for the colon (with strchr, declared in string.h) then

it takes the integer string to determine the value for the hours and the string

after the colon for the minutes.

The program then waits by calling the function sleep, the argument for

which is the number of seconds for which the program should "sleep", or

suspend execution.

Finally, in order to be able to stop the alarm, we give it the command

which should be inserted in the shell to "kill" the process (meaning to

end its execution). To do this, it uses the process number corresponding

to the daemon installed. This identifier is obtained by calling the function

getpid(), where PID stands for process identifier.

One of the fundamental uses of daemons is in the implementation of

service provider processes.

12.2.3. Concurrent processes

Concurrent processes are those which are executed simultaneously in a

single system. In this context, simultaneously refers to the fact that they

are performed during the same time period in different processors or are

distributed in time on a single processor, or both.

Distributing the execution of a program over several concurrent instruction

flows has the following goals:

• Using all the resources of a multi-processor system. By executing each

flow of instructions in a different processor, the program runs faster. In

fact it is only in this example that the execution processes are genuinely

simultaneous.

Note

When two or more processes are sharing the same processor, there is no option but to
execute them in alternating sections with a specific duration, each program will advance
a certain amount during each period.

GNUFDL • PID_00148427 59 Advanced programming in C. The development of efficient applications

• Increasing performance with respect to data input/output. To increase the

I/O performance of a program, it is desirable that one of the processes deals

with data input, another with the calculations needed to be performed on

it and, lastly, another dealing with the output. In this way we can perform

the calculations without stopping to output data or waiting for new data to

be input. We do not always need to partition a program in this way and the

number of processes will vary depending on the needs of the program. In

this case we are separating processes which are slower (for example, those

which need to communicate with others either to receive or to transmit

data) from those which are faster, or those dealing more with calculations.

In the following sections we will look at several examples of concurrent

programming using both "light processes" (threads) and complete or "heavy"

processes (those which are not light).

GNUFDL • PID_00148427 60 Advanced programming in C. The development of efficient applications

13.Threads

A thread is a process which shares the environment with others from the

same program, meaning that the memory space is the same. Therefore, the

creation of a new thread only implies having the information on the state of

the processor and the next instruction for the same. It is for this reason that

they are known as "light processes".

Threads are individual instruction execution flows which are closely

related.

To use them in C on Linux we need to make calls to the POSIX standard thread

functions. This standard defines a portable interface for operating systems

(originally for Unix) for computational environments, it takes its name from

the acronym.

POSIX thread functions are declared in the file pthread.h and the

corresponding library archive should be linked to the program. To do this we

need to compile it using the following command:

$ gcc -o executable code.c -lpthread

Note

The option –lpthread tells the linker that it should also include the library of POSIX
functions for threads.

13.1. Example

We will look at a program to determine if a number is prime or not and

which has been unwound into two threads. The main thread is in charge of

searching for possible divisors and the second acts as the "observer" for the

user: this will read the data which manages the main thread and present it

on the standard output terminal. This is possible because they share the main

space in memory.

The creation of threads requires that their code be within a function which

only allows for one parameter of the type (void *). In fact, functions created

to be POSIX threads must obey the following header:

(void *)thread(void *reference_parameters);

GNUFDL • PID_00148427 61 Advanced programming in C. The development of efficient applications

It is therefore necessary to place all the information to be made visible to the

user in a tuple and pass its address as a parameter of the same. We will now

define the tuple of elements which will show:

/* ... */

typedef struct s_visible {

 unsigned long number;

 unsigned long divisor;

 bool end;

} t_visible;

/* ... */

Note

The field end indicates to the child thread that the main thread (the parent) has finished
its task. In this case it will have determined if the number is prime or not.

The function of the child thread will be as follows:

/* ... */

void *observer(void *parameter)

{

 t_visible *ref_view;

 ref_view = (t_visible *)parameter;

 printf(" ... checking %012lu", 0);

 do {

 printf("\b\b\b\b\b\b\b\b\b\b\b\b");

 printf("%12lu", ref_view->divisor);

 } while(!(ref_view->end));

 printf("\n");

 return NULL;

} /* observer */

/* ... */

Note

The character '\b' corresponds to backspace and, given that the numbers are printed
using 12 digits (the zeros to the left are shown as spaces), the printing of 12 backspaces
will delete the number which was previously printed.

To create the observer thread we need to call pthread_create() using the

appropriate parameters. From this moment on a new thread will execute

concurrently with the program code.

/* ... */

int main(int argc, char *argv[])

{

 int error_code; /* Error code to be returned. */

 pthread_t id_thread; /* Thread identifier. */

GNUFDL • PID_00148427 62 Advanced programming in C. The development of efficient applications

 t_visible view; /* Observable data. */

 bool result; /* Indicates whether it is prime. */

{

 int error_code; /* Error code to be returned. */

 pthread_t id_thread; /* Thread identifier. */

 t_visible view; /* Observable data. */

 bool result; /* Indicates whether it is prime. */

 if(argc == 2) {

 view.number = atol(argv[1]);

 view.end = FALSE;

 error_code = pthread_create(

 &id_thread, /* Reference at which to place the ID.*/

 NULL, /* Reference to possible attributes. */

 observer, /* Function which executes the thread.*/

 (void *)&view /* Argument of the function. */

); /* pthread_create */

 if(error_code == 0) {

 result = is_prime(&view);

 view.end = TRUE;

 pthread_join(id_thread, NULL);

 if(result)printf("It is prime.\n");

 else printf("It is not prime.\n");

 error_code = 0;

 } else {

 printf("I could not create an observer thread!\n");

 error_code = 1;

 } /* if */

 } else {

 printf("Use: %s number\n", argv[0]);

 error_code = -1;

 } /* if */

 return error_code;

} /* main */

Note

After creating the observer thread we check whether the number is prime and, on
returning to the is_prime()function, we set the end field to TRUE so that the observer
ends execution. In order to wait until it has actually finished we call pthread_join().
This function waits until the thread whose identifier has been taken as the first argument
reaches the end of its execution and the two threads are joined (or connected). The second
argument is used to collect any possible data returned by the thread.

To complete this example we will need to code the function is_prime(),

which will need to have the following header:

/* ... */

bool is_prime(t_visible *ref_data);

GNUFDL • PID_00148427 63 Advanced programming in C. The development of efficient applications

/* ... */

The programming has been left for an exercise. To resolve it correctly, we need

to remember that we need to use ref_data->divisor as it is, given that the

observer() function reads it to present it to the user.

In this case, the fact that the two threads have the same memory space, or the

same environment or context, does not matter. However, it is fairly common

that access to shared data by more than one thread is synchronised. In other

words, a mechanism is enabled to prevent the two threads from accessing the

data simultaneously, especially for modifying it, but also to ensure that the

data read by the threads has been correctly updated. These mechanisms are

mutually exclusive and are, in fact, conventions on calls to functions before

and after accessing the data.

Note

We can imagine these to be like the mechanism of a traffic light controlling access to a
car park: If there is space, the traffic light will be green and if it is full, the light will be
red, until a space becomes free.

GNUFDL • PID_00148427 64 Advanced programming in C. The development of efficient applications

14.Processes

A process is a an instruction execution flow with its own environment and,

therefore, with all the attributes of a program. The instruction execution flow

can therefore be divided into other processes (light or not) if we deem it

appropriate for reasons of efficiency.

In this case, the generation of a new process from the main process implies

making a copy of the whole environment of the main one. The child process

will therefore have a complete copy of the environment of the parent at the

moment of separation. From then on, both the content of the variables and

the indication of the next instruction may diverge. These therefore act as two

distinct processes with environments which are obviously different from that

of the executable code.

Given the strict separation of the environments of the processes, these are

generally divided when we need to perform the same task using different data,

and the task is performed by each of the child processes autonomously. There

are also mechanisms to allow processes to communicate with each other:

pipes, message queues, shared variables (in this case there are functions to

implement mutual exclusivity) and any other type of communication which

can be established between different processes.

To create a new process we just need to call fork(), the declaration for which

is found in unistd.h, and this will return the identifier of the child process

in the parent and 0 for the new process:

GNUFDL • PID_00148427 65 Advanced programming in C. The development of efficient applications

Figure 11.

Note

The fact that fork() returns different values for the parent and child processes allows
the following instruction flows to determine whether they belong to one or the other.

The following program is a simple example of division in a dual process: the

original, or parent and the copy, or child. To simplify matters we will assume

that both the child and the parent perform the same task. In this example the

parent waits for the child to end execution using wait(), this requires the

inclusion of the sys/types.h and sys/wait.h:

/* File: ex_fork.c */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

/* ... */

int main(void)

{

 pid_t process;

 int status;

 printf("Parent process (%li) initialised.\n", getpid());

 process = fork();

 if(process == 0) {

 printf("Child process (%li) initialised.\n", getpid());

 task("child");

GNUFDL • PID_00148427 66 Advanced programming in C. The development of efficient applications

 printf("End of child process.\n");

 } else {

 task("parent");

 wait(&status); /* Waits for child to end. */

 printf("End of parent process.\n");

 } /* if */

 return 0;

} /* main */

To prove that these two processes are executed in parallel, the parent and child

tasks should be different or they should use different input data.

To illustrate this situation we will look at the programming of a function in

which the task employs repeated waits. In order to observe that the execution

of the two processes may not always be interleaved in the same way, both

the number of repetitions and the waiting time will be based on a random

number provided by the function random(), this needs a "seed" value which

is calculated using srandom() with an argument which will vary with each

execution and the type of process (parent or child):

/* ... */

void task(char *name)

{

 unsigned int counter;

 srandom(getpid() % (name[0] * name[2]));

 counter = random() % 11 + 1;

 while(counter > 0) {

 printf("... step %i del %s\n", counter, name);

 sleep(random() % 7 + 1);

 counter = counter -1;

 } /* while */

} /* task */

/* ... */

In the above example the parent waits for a single child and performs the same

task. This is obviously not common. It is much more usual that the parent

process generates a child process for each set of data to be processed. In this

case, the main program is made slightly more complicated and we need to

make the selection based on the value returned by fork() if the instructions

belong to the parent or one of the children.

To illustrate the coding of these kinds of programs we will look at a program

which uses an unknown number of natural numbers as arguments and checks

to see if they are prime numbers or not. In this case the main program will

create a child process for each natural number to be treated:

GNUFDL • PID_00148427 67 Advanced programming in C. The development of efficient applications

/* ... */

int main(int argc, char *argv[])

{

 int counter;

 unsigned long int number, divisor;

 pid_t process;

 int status;

 if(argc > 1) {

 process = getpid();

 printf("Process %li initiated.\n", process);

 counter = 1;

 while(process != 0 && counter < argc) {

 /* Creation of child processes: */

 number = atol(argv[counter]);

 counter = counter + 1;

 process = fork();

 if(process == 0) {

 printf("Process %li for %lu\n",

 getpid(),

 number

); /* printf */

 divisor = is_prime(number);

 if(divisor > 1) {

 printf("%lu is not prime.\n", number);

 printf("Its first divisor is %lu\n", divisor);

 } else {

 printf("%lu is prime.\n", number);

 } /* if */

 } /* if */

 } /* while */

 while(process != 0 && counter > 0) {

 /* Wait for end of child process:*/

 wait(&status);

 counter = counter -1;

 } /* while */

 if(process !=0) printf("End.\n");

 } else {

 printf("Use: %s natural_1 ... natural_N\n", argv[0]);

 } /* if */

 return 0;

} /* main */

GNUFDL • PID_00148427 68 Advanced programming in C. The development of efficient applications

Note

The creation loop is interrupted if process==0 to prevent the child processes from being
able to create "grandchildren" with the same data as some of their "brothers".

We need to bear in mind that the program code is the same for both the parent process
and the child process.

However, the wait loop at the end should only apply to the parent, meaning the process
in which the variable process is not zero. In this case we just need to deduct one unit
from the process counter for each wait performed.

To check it is working we will need to design the is_prime()function, but we

will leave this as an exercise. In order to observe the operation of the program

it is useful to enter a large prime number and a smaller or non-prime number.

14.1. Communication between processes

As we have already mentioned, processes can communicate with each other

(either if they belong to the same program or not) using the mechanisms of

pipes, message queues and shared variables, among others. These mechanisms

can also be applied in communications between different programs of

the same application and even different applications. However, these will

always be low-level communications and will require mutual exclusion when

accessing data to prevent conflicts.

As an example, we will look at a program which breaks down any natural

number into the sum of the powers of the prime divisors. To do this it uses a

process to calculate the prime divisors and another, the parent, to show them

once they have been calculated. Each factor of the sum is a piece of data of

the type:

typedef struct factor_s {

 unsigned long int divisor;

 unsigned long int power;

} factor_t;

Communications between the processes are performed using a pipe.

Note

Remember that in the previous unit we defined a pipe. A pipe consists of two byte stream
files, one for input and one for output, which are used by two processes to communicate.

As we can see from the following code, the function used to open a pipe is

called pipe() and takes the argument of the address of a two-integer vector

which will hold the descriptors of the stream files it has opened: The output at

position 0 and the input at position 1. After the fork(), both processes have

a copy of the descriptors and, therefore, can access the same files both for the

input and the output of data. In this case, the child process will close the input

file and the parent will close the output file, given that the pipe only allows

GNUFDL • PID_00148427 69 Advanced programming in C. The development of efficient applications

the processes to communicate in a single direction: from child to parent. (If

we would like to communicate in both directions we would need to establish

a data access protocol to avoid conflicts):

/* ... */

int main(int argc, char *argv[])

{

 unsigned long int number;

 pid_t process;

 int status;

 int desc_pipe[2];

 if(argc == 2) {

 printf("Prime divisors.\n");

 number = atol(argv[1]);

 if(pipe(desc_pipe) != -1) {

 process = fork();

 if(proceso == 0) { /* Child process: */

 close(desc_pipe[0]);

 divisors_of(number, desc_pipe[1]);

 close(desc_pipe[1]);

 } else { /* Main or parent process: */

 close(desc_pipe[1]);

 show_divisors(desc_pipe[0]);

 wait(&status);

 close(desc_pipe[0]);

 printf("End.\n");

 } /* if */

 } else {

 printf("I cannot create the pipe!\n");

 } /* if */

 } else {

 printf("Use: %s natural_number\n", argv[0]);

 } /* if */

 return 0;

} /* main */

Including everything, the code of the show_divisors() function in the

parent process could be as the one shown below. It uses the reading function

read(), which tries to read a certain number of bytes from the file whose

descriptor is sent to it as the first argument. It returns the number of bytes

effectively read and their content and deposits this at the indicated memory

address.

/* ... */

void show_divisors(int desc_input)

{

GNUFDL • PID_00148427 70 Advanced programming in C. The development of efficient applications

 size_t nbytes;

 factor_t factor;

 do {

 nbytes = read(desc_input,

 (void *)&factor,

 sizeof(factor_t)

); /* read */

 if(nbytes > 0) {

 printf("%lu ^ %lu\n",

 factor.divisor,

 factor.power

); /* printf */

 } while(nbytes > 0);

} /* show_divisors */

/* ... */

To complete the example we will look at a possible programming of the

function divisors_of() in the child process. This function uses write() to

deposit the recently calculated factors in the output file of the pipe:

/* ... */

void divisors_of(

 unsigned long int number,

 int desc_output)

{

 factor_t f;

 f.divisor = 2;

 while(number > 1) {

 f.power = 0;

 while(number % f.divisor == 0) {

 f.power = f.power + 1;

 number = number / f.divisor;

 } /* while */

 if(f.power > 0) {

 write(desc_output, (void *)&f, sizeof(factor_t));

 } /* if */

 f.divisor = f.divisor + 1;

 } /* while */

} /* divisors_of */

/* ... */

In this example we have looked at one of the possible ways processes can

communicate with each other. In general, each communication mechanism

will have preferred uses.

GNUFDL • PID_00148427 71 Advanced programming in C. The development of efficient applications

Note

Pipes are suitable for passing relatively large amounts of data between processes while
message queues are better if the process communicates infrequently or in an irregular
way.

We always need to remember that distributing the tasks of a program over

several processes will involve an increase in its complexity due to the need

to insert communications mechanisms among them. It is therefore important

to evaluate the benefits which such a division may bring to the development

of the program.

GNUFDL • PID_00148427 72 Advanced programming in C. The development of efficient applications

Summary

The algorithms which are used to process the information may be more or

less complex depending on how they are represented. As a consequence, the

efficiency of the programming is directly related to the data structures it uses.

For this reason we have introduced dynamic data structures that allow us to

make better use of the memory and to change the relationships they have as

part of the processing of the information.

Dynamic data structures are those in which the number of pieces of data

can vary during the execution of a program and whose relationships may

also change. This is done through the creation and destruction of dynamic

variables and in the mechanisms used to access them. Basically, accessing

these variables should be done using pointers given that dynamic variables do

not have names with which they can be identified.

We have also looked at common examples of dynamic data structures such

as character strings and node lists. For the second of these we reviewed the

possible programming of the management funcions for the nodes in a list and

we took a look at how they can be treated in a special way, in that they can

be used to represent queues.

Given that many of these common dynamic data structure functions are used

often, we can group them into object file archives: function libraries. In this

way we can use the same functions in diverse programs without having to

worry about programming them. Even so, we will need to include the header

files in order to tell the compiler how to invoke these functions. We looked at

the mechanism for creating function libraries and also introduced the make

utility which is used for generating executables resulting from the compilation

of several units of the same program and the library archives required.

We have seen how the relationships between the different abstract data types

of a program can facilitate modular programming. In fact, these types are

classified according to their level of abstraction, or, depending on how you

look at it, by their dependency on other data types. It is therefore abstract

data types which are defined in terms of primitive data types which have the

lowest level of abstraction.

As such, it will be the main program which operates with the data types of

the highest level of abstraction. The rest of the program modules will be those

providing the main program with the functions it needs to perform these

operations.

GNUFDL • PID_00148427 73 Advanced programming in C. The development of efficient applications

We can therefore use top-down algorithm design, based on the hierarchy

established between the different data types used, as a technique to produce

an efficient modular program.

In practice, each abstract data type should be accompanied by the functions

for basic operations such as creation, data access, copying, duplication and

destruction for the corresponding dynamic variables. What is more, they

should be contained in an independent compilation unit together with the

correct header file.

In the last chapter we looked at the organisation of code, not just in terms

of the information to be processed but also in relation to how this should be

done. It therefore makes sense to take maximum advantage of the facilities

provided by the C programming language for using the service routines of the

operating system.

When information needs to be processed by another program, we can execute

it from the instruction execution flow of the one under execution. In this case

however, there will be minimal communication between the called program

and the caller. As a consequence, it should be the called program which

handles most of the information and which produces the result.

We have also looked at the possibility of dividing the instruction execution

flow into several different flows which are executed concurrently. In this way

it is possible to specialise each flow for a certain aspect of the treatment of the

information and, in other cases, to perform the same treatment on different

parts of the information.

Instruction execution flows can be divided into threads (threads) or processes.

Threads are also known as light processes as they share the same context of

execution (environment). We would determine the best type of division based

on the type of treatment of the information. We can use the level of sharing

of the information as a rule: if it is high, it will be better to use a thread, if it is

low, a process (there are several communications methods depending on the

level of relationship they have).

Part of the content of this unit will re-examine how both C++ and Java

facilitate programming using abstract data types, modular design and the

distribution of the execution over several instruction flows.

GNUFDL • PID_00148427 75 Advanced programming in C. The development of efficient applications

Self-evaluation

1. Write a search engine for words in files similar to the last exercise of the previous unit.
The program should ask for the name of the file and the word to be searched. In this case,
the main function should be as follows:

GNUFDL • PID_00148427 76 Advanced programming in C. The development of efficient applications

We then need to program the function next_word().

2. Using the functions provided in section 4.2, write a function to delete the nth element
from a list of integers. The main program should be as follows:

GNUFDL • PID_00148427 77 Advanced programming in C. The development of efficient applications

GNUFDL • PID_00148427 78 Advanced programming in C. The development of efficient applications

We will also need to program the function show_list() to be able to see its contents.

3. Write a program which allows us to insert and delete elements from an integer queue. The
functions which should be used can be found in the section referring to queues in section
4.2. We therefore only need to develop the main function for this program, you could use
the one from the previous exercise as the basis.

4. Program the ordering by selection algorithm seen in section 5 for classifying a text file in
which each line has the following format:

National identity number mark

The elements will be of the same data type as that seen in the example. The main program
will be:

GNUFDL • PID_00148427 79 Advanced programming in C. The development of efficient applications

We will also need to program the following functions:

• element_t create_element(unsigned int national identity number, float
marks);

• element_t read_element(char *phrase);

• void show_element(element_t element);

Note

In this case, the elements of the list are not destroyed before the end of the execution
of the program because it is simpler and we also then know that all the memory will
have been released. However, it is still not good programming practice and we therefore
suggest you do another exercise and incorporate a function to delete the dynamic
variables for each element before the execution of the program has finished.

5. Write the above program in three different compilation units: One for the main program,
which can also be divided into more manageable functions, one for the elements and another
for the lists, which can be transformed into a library.

GNUFDL • PID_00148427 80 Advanced programming in C. The development of efficient applications

6. Write a program which accepts a fiscal identification number as an argument and validates
it. You can use exercise number 7 from the previous unit as a reference.

7. Transform the utility for searching words in text files from the first exercise so that it uses
both the search word and the name of the text file in which the search is to be performed
as arguments in the command line.

8. Create a command which shows the content of the directory as if it was a ls –als |
more . In order to do this, we will need to write a program that executes this mandate and
returns the corresponding error code.

9. Program an "alarm clock" which displays a message after a certain period or at a certain
time. Use the example program we looked at in the section on permanent processes as a
reference.

The first argument of the program should be the hour and minutes when the message is
displayed, the message will be the second argument. If the hours and minutes are preceded
by the +" sign, it will be treated in the same way as in the example, as the time period which
should pass before the message is shown.

We should remember that the reading of the first value of the first argument can be done
in the same way as in the "alarm" program, given that the +" sign is interpreted as a sign
indicator for the same number. This means we specifically need to read argv[1][0] to know
if the user has inserted the sign or not.

To know the current time we need to use the standard library functions for time, which are
declared in time.h, the use of which is shown in the following program:

10. Try out the prime number detection programs using threads and processes. To do
this we need to define the function is_prime() correctly. The following program is a
demonstration of this function and takes advantage of the fact that no integer divisor will be
larger than the square root of the number (it will be approximated by the closest power of 2):

GNUFDL • PID_00148427 81 Advanced programming in C. The development of efficient applications

GNUFDL • PID_00148427 82 Advanced programming in C. The development of efficient applications

Answer key

1. As we already have the main program, it is sufficient to show the function next_word:

2.

GNUFDL • PID_00148427 83 Advanced programming in C. The development of efficient applications

3.

GNUFDL • PID_00148427 84 Advanced programming in C. The development of efficient applications

4.

GNUFDL • PID_00148427 85 Advanced programming in C. The development of efficient applications

5. See section 5

6.

GNUFDL • PID_00148427 86 Advanced programming in C. The development of efficient applications

7.

GNUFDL • PID_00148427 87 Advanced programming in C. The development of efficient applications

8.

GNUFDL • PID_00148427 88 Advanced programming in C. The development of efficient applications

GNUFDL • PID_00148427 89 Advanced programming in C. The development of efficient applications

10. This means repeating the given code within a function which has the correct header for
each case.

Object oriented
programming in
C++

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Josep Anton Pérez López
Lluís Ribas i Xirgo

PID_00148430

GNUFDL • PID_00148430 Object oriented programming in C++

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148430 Object oriented programming in C++

Index

Introduction... 5

1. From C to C++... 7

1.1. Our first C++ program .. 7

1.2. Data input and output .. 8

1.3. Using C++ like C ... 10

1.4. Basic instructions .. 11

1.5. Data types .. 11

1.6. The declaration of variables and constants 13

1.7. The management of dynamic variables 14

1.7.1. The operators new and delete...................................... 15

1.7.2. Pointers const.. 15

1.7.3. References .. 16

1.8. Functions and their parameters .. 17

1.8.1. Using parameters by value or by reference 17

1.8.2. The use of const.. 19

1.8.3. Function overloading .. 19

2. The object oriented programming paradigm............................ 22

2.1. Classes and objects ... 23

2.1.1. Declaring a class .. 24

2.1.2. Implementing the member functions of a class 24

2.1.3. The member functions const.. 25

2.1.4. Declaring an object ... 26

2.2. Accessing objects ... 26

2.2.1. Member data privacy ... 27

2.2.2. The pointer this.. 29

2.3. Object constructors and destructors ... 29

2.3.1. The copy constructor .. 31

2.3.2. Initialise values in the constructor methods 33

2.3.3. Static member variables and member functions 34

2.4. The organisation and use of libraries in C++ 35

2.4.1. Standard libraries ... 36

2.4.2. Using STL libraries ... 37

3. Designing object oriented programs.. 39

3.1. Homonymy ... 39

3.1.1. Overloading of functions and methods 39

3.1.2. Overloading operators ... 40

3.2. Simple inheritance .. 43

3.2.1. The implementation of inheritance 44

GNUFDL • PID_00148430 Object oriented programming in C++

3.2.2. Constructors and destructors of derived classes 45

3.3. Polymorphism ... 48

3.3.1. Virtual functions .. 49

3.3.2. The declaration of virtual functions 51

3.3.3. Virtual constructors and destructors 51

3.3.4. Abstract data types and pure virtual functions. 51

3.4. Avanced operations using inheritance 53

3.4.1. Multiple inheritance .. 53

3.4.2. Private inheritance ... 55

3.5. Guidelines for the analysis and design of programs 55

3.5.1. Ways of developing a project .. 57

Summary.. 58

Self-evaluation.. 59

Answer key.. 60

GNUFDL • PID_00148430 5 Object oriented programming in C++

Introduction

Up until now we have mainly looked at how to tackle a problem using the

modular programming and top-down design paradigms for algorithms. We

can use these to overcome complex problems by breaking them down into

simpler problems, progressively reducing their level of abstraction until we

get a more manageable level of detail. The problem will be reduced to data

structures and functions or procedures.

In order to work more efficiently, good programming practice tells us to group

sets of routines and interrelated structures into compilation units which are

then linked to the main archive. This achieves the following:

• The rapid localisation of the source code which performs a specific task

and limiting the impact of the modifications on certain archives.

• It improves the legibility and understandability of the source code as the

parts are separated.

However, organising the project documents like this will only provide a

certain separation between the different archives and will not reflect the close

relationship which often exists between the data and the functions.

In reality we will often want to implement entities in such a way that they

have a few general properties: awareness of the inputs they need, a general idea

of their functionality and the outputs they generate. In general, the specific

details of the implementation are not important: there will clearly be dozens

of ways to do it.

We can use a television as an example. Its properties could be the brand, the

model, its measurements and number of channels and the actions to be taken

could be turning it on or off, changing the channel, tuning to a new channel

etc. When we are using a television we see it as a closed box with a set of

properties and connections. We have no interest in its internal workings, we

just want it to do something when we press the appropriate button. What is

more, it can be used anywhere and the functions will always be the same. If

it breaks down, it can be replaced by a new one and the basic characteristics

(having a brand, turning on and off, changing channels etc) will remain the

same despite the fact that the television is more modern. The television is

treated as an individual object and not as a set of component parts.

GNUFDL • PID_00148430 6 Object oriented programming in C++

When we apply this principle to programming it is called encapsulation.

Encapsulation consists of implementing an element (the details of which we

will look at later) which will act as a "black box" where we have inputs, a

general idea of its operation and some outputs. This provides the following:

• The re-use of code. If we already have a "black box" whose characteristics

match the needs defined, it can be incorporated without interfering with

the rest of the project.

• The maintenance of code. We can make changes without affecting the

project as a whole and still complying with the specifications of said "black

box".

We will call each of these elements objects (in reference to the objects they

represent in real life). When working with objects, which supposes a higher

level of abstraction, we need to design an application without thinking about

the sequence of instructions, but focusing on the definition of the objects

involved and the relationships which have to be established between them.

In this unit we will be looking at a new language which allows us to look at

things from the perspective of object oriented programming: C++.

This new language is based on the C language but has new attributes. So, firstly

we should compare the two languages and their common aspects to allow us

to learn it more quickly. Below we have set out the new paradigm and the

tools which the new programming language provides for the implementation

of objects and their relationships. Lastly we will look at how this change in

philosophy affects the design of applications.

In this unit we will try to give readers a basic understanding of object oriented

programming using C++ and the design of applications using this paradigm

based on their knowledge of C. At the end of this unit the reader should have

achieved the following objectives:

1) An understanding of the principal differences between C and C++, although

without having explored object technology.

2) An understanding of the object oriented programming paradigm.

3) Knowledge of implementing classes and objects in C++.

4) An understanding of the main properties of objects: inheritance,

homonymity and polymorphism.

5) To be able to design a simple application in C++ applying the principles of

object oriented design.

GNUFDL • PID_00148430 7 Object oriented programming in C++

1. From C to C++

1.1. Our first C++ program

Choosing the C++ programming environment for the implementation of the

new paradigm of object oriented programming provides many advantages due

to the many similarities with C. However it could become a limiting factor if

the programmer does not explore the new attributes of this language and the

fact that it has some very interesting improvements.

Traditionally, in the world of programming the first contact with a new

language takes the form of displaying the classic message "Hello world" and

we will make no exceptions in this case.

You should therefore write the following text in your text editor and save it

with the name example01.cpp:

#include <iostream>

int main()

{

 cout << "hello world \n" ;

 return 0;

}

Comparing this program with our first program in C we can see that the

structure is similar. In fact, as we have already mentioned, C++ can be seen

as an evolution of C for the implementation of object oriented programming

and therefore a large percentage of it is compatible.

The only observable difference is to be found in that the output is managed

by an object called cout. We will look at the nature of objects and classes in

more depth later on, but for now we can get an idea of how they work by

considering a class as a new data type which includes attributes and associated

functions and the object as being a variable of said data type.

The definition of the object cout is contained in the <iostream> library which

is included in the first line of the source code. We should also notice the way

that the text "Hello world" is addressed to the object using the << symbol, the

cout function generates the output of this message on the screen.

Note

The extension ".cpp" tells the
compiler that the source code
type is C++.

GNUFDL • PID_00148430 8 Object oriented programming in C++

As the handling of the input/output functions is one of the main new areas

in C++, we will begin by looking at the differences between one language and

the other.

1.2. Data input and output

Although the input/output operations are not actually defined within the

programming languages of C or C++, they are obviously required for programs

to be able to work. The operations allowing communication between users

and the programs are to be found in libraries provided by the compiler. In

this way we can translate a source code written for a Sun environment to our

home PC, making it independent of the platform used. At least in theory.

As mentioned in previous units, input/output functionality in C is provided

through function libraries, the most important of which is <stdio.h> or

<cstdio> (standard input/output). The functions (printf, scanf, fprint,

fscanf etc.) still work in C++ although we do not recommend using them

as they do not take advantage of the advances in the new programming

environment.

Note

Both ways of expressing the name of the library <xxxx.h> or <cxxxx> are correct
although the second is considered to be the standard way of including C libraries within
the C++ language and the only one recommended for use in new applications.

C++, as with C, understands the communication of data between the program

and the screen as a data stream: the program progressively sends data and the

screen receives it and displays it. It also understands communications between

the keyboard (or other input devices) and the program.

In order to manage these data streams, C++ includes the iostream class which

creates and initialises four objects:

• cin. Manages data input streams.

• cout. Manages data output streams.

• cerr. Manages the output to the default error device: the screen.

• clog. Manages error messages.

Some simple examples of their use are shown below.

#include <iostream>

int main()

{

 int number;

 cout << "Write a number: ";

GNUFDL • PID_00148430 9 Object oriented programming in C++

 cin >> number;

}

In this block of code we can observe the following:

• The declaration of an integer variable we want to work with.

• The text "Write a number" (which we consider as a literal data stream)

which we wish to send to our output device.

To achieve our goal we direct the text to the object cout using the >> operator.

The result is that the message is shown on the screen.

• A variable in which we wish to store the input from the keyboard. Once

again we can achieve this by directing the input stream received from the

keyboard (represented/managed by the object cin) to the variable.

The first surprise for C programmers who are used to printf and scanf

is that the format of the data we want to print or receive is not indicated

in the instruction. This is in fact one of the main advantages of C++: the

compiler recognises the data type of the variables and handles the data stream

correspondingly. Simplifying this idea slightly, we could say that the objects

cin and cout adapt themselves to the data type. This attribute allows us

to adapt the objects cin and cout for the handling of new data types (for

example, structs), which would be unthinkable with the earlier system.

If we want to show or collect several variables we simply chain the data

streams:

#include <iostream>

int main()

{

 int i, j, k;

 cout << "Enter three numbers";

 cin >> i >> j >> k;

 cout << "The numbers are: "

 cout << i << ", " << j << " and " << k;

}

In the last line we can see how, firstly, the data stream is sent to cout , this

corresponds to the text "The numbers are: "; followed by the data for the

variable i; followed by the literal text " , ", and so on till the end.

When entering data using the keyboard, cin will read the characters until

a line feed character is entered (return or "\n"). It will then extract the data

stream of characters until it finds the first space and will store the result in

the variable i. The result of this operation will also be a data stream (without

the first number that has already been extracted) that will receive the same

GNUFDL • PID_00148430 10 Object oriented programming in C++

treatment: characters of the data stream will be extracted up to the next

separator to be sent to the next variable. This process is repeated for all three

variables.

The read line could therefore have been written in the following way and

would be equivalent, but less clear:

(((cin >> i) >> j) >> k)

If we want to show the variable in a certain format we must use an object

manipulator indicating the desired format. We can see how this works in the

following example:

#include <iostream>

#include <iomanip>

// Must be included for the definition of the

// cout object manipulators with parameters

int main()

{

 int i = 5;

 float j = 4.1234;

 cout << setw(4) << i << endl;

 //shows i with a length of 4 char.

 cout << setprecision(3) << j << endl;

 // shows j to three decimal places

}

There are many other formatting possibilities but they are not the object

of this course. This information is available on the compiler's help page.

1.3. Using C++ like C

As we have already mentioned, C++ evolved from C, meaning that it is

fairly easy for C programmers to adapt to the new environment. However,

as well as introducing object oriented programming, C++ also includes other

improvements over classical programming which can be useful to learn and

which allow us to fully take advantage of the object oriented programming

paradigm.

We will now look more in depth at the various aspects of the language.

GNUFDL • PID_00148430 11 Object oriented programming in C++

1.4. Basic instructions

In this respect, C++ has remained faithful to C. The instructions keep their

basic appearance (ending in a semi-colon, blocks of code between bracers etc.)

and the basic flow control instructions, both selection and iterative, keep their

syntax (if, switch, for, while, do ... while). These attributes make

leaning the new language a fairly quick process.

We can include the input/output functions within the basic instructions.

However, these do present significant changes in C++ which we looked at in

the last section.

We also need to underline the fact that it includes a new way of adding

comments within the source code to make reading and maintaining it easier.

It still keeps the comment system where we can include text between the

characters /* (start of comment) and */ (end of comment), but a new way of

doing it has also been added: the sequence // allows us to add a comment up

to the end of the line.

Example

/*
This text has been included using the classic method used in C.
It can contain as many lines as we want.
*/

//
// This text uses the new comment format
// up to the end of line incorporated in C++
//

1.5. Data types

The fundamental data types in C (char, int, long int, float and

double) are still in C++ with the addition of bool (boolean or logic type),

which can acquire two possible values: false or true, these have now been

defined in the language.

// ...

{

 int i = 0, num;

 bool continue;

 continue = true;

 do

 {

 i++;

 cout << "To end this loop that has run";

 cout << i << "times, press 0 ";

 cin >> num;

 if (num == 0) continue = false;

GNUFDL • PID_00148430 12 Object oriented programming in C++

 } while (continue);

}

Although we often saw logic or boolean variables in C using integer values (0

is false and any other value is true), the new implementation simplifies this

and helps to prevent errors. The new data type also only occupies one byte of

memory instead of the two bytes used when simulating it with the type int.

We also need to point out other new aspects relating to structured type

(struct, enum or union). In C++ these are now used to describe complete data

types so avoiding the need for the use of the instruction typedef to define

new data types.

In the following example we can see that the definition part of the new type

does not change:

struct date {

 int day;

 int month;

 int year;

};

enum daysWeek {MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

 FRIDAY, SATURDAY, SUNDAY};

The declaration of a variable of this type is simplified given that we do not

need to repeat the terms struct, enum or union, or define new types using

the instruction typedef:

date birthday;

daysWeek holiday;

Referencing data does not change either.

// ...

birthday.day = 2;

birthday.month = 6;

birthday.year = 2001;

holiday = MONDAY;

In the case of declaring variables of the type enum , two functions are fulfilled:

• Declaring daysWeek as a new type.

• Making MONDAY correspond to the constant 0, TUESDAY to the constant

1 and so on.

GNUFDL • PID_00148430 13 Object oriented programming in C++

Therefore each enumerated constant will be an integer value. If none are

specified, the first value taken will be 0 and the successive constants will

increase by one unit. However, C++ also allows us to change this and we can

assign a specific value to each constant:

enum behaviour {HORRIBLE = 0, BAD, FAIR = 100,

 GOOD = 200, VERY_GOOD, EXCELLENT};

In this way, HORRIBLE will take the value 0, BAD the value 1, FAIR the value

100, GOOD the value 200, VERY_GOOD the value 201 and EXCELLENT the value

202.

Another aspect to bear in mind is the recommendation for the new version

on typecasting. For greater legibility C++ recommends using:

int i = 0;

long v = (long) i; // typecasting in C

long v = long (i); // typecasting C++

1.6. The declaration of variables and constants

The declaration of variables in C++ still has the same format as in C, but we

also insert a new element which provides a safer way of working. The use of

the specifier const for the definition of constants.

In programming, we use a constant when we know for sure that a certain

variable will not change during the execution of the application.

const float PI = 3.14159;

Once the constant has been defined, it can not be assigned another value and

will therefore always appear on the right hand side of expressions. However,

a constant must always be initialised:

const float radius;// ERROR!!!!!!!!

The use of constants is not new in C. The classic way of defining them using

the preprocessor instruction #define.

#define PI 3.14159

In this case the actual action will be to replace each appearance of the text PI

by its value in the text preprocessing phase. Therefore, when it sees this text

the compiler only sees the number 3.14159 and not PI.

GNUFDL • PID_00148430 14 Object oriented programming in C++

In spite of that, while the second of these cases corresponds to special

treatment during the process before compilation, the use of const

standardises this procedure and makes it similar to a variable but with limited

capabilities. It receives the same treatment as variables with respect to the

scope of action (only in the working file, unless indicated otherwise using the

reserved word extern) and it has an assigned type, this means that all the

types can be checked during the compilation phase making the source code

more robust.

1.7. The management of dynamic variables

Direct memory management is one of the most powerful tools available

in C++, but also one of the most dangerous: Accidentally accessing

memory locations which do not correspond to the required data can have

unpredictable results, in the worst case they may be disastrous.

In the previous chapters we have seen how operations using memory

addresses in C are based on the use of pointers (*point) to access a variable

from its memory address. They use the indirection or dereference operator (*),

and their attributes are:

• pointer contains a memory address.

• *pointer indicates the content residing at that memory address.

• To access the memory address of a variable we use the address operator

(&) preceding the name of the variable.

// Example of the use of pointers

int i = 10;

int *point_i = &i;

 // point_i takes the address

 // of the integer type variable i

 // If it is not assigned here, it would

 // be advisable to initialise it to NULL

*point_i = 3;

 // The value 3 is assigned to the memory

 // position point_i

 //This therefore modifies the value of i.

cout << "Original Value : " << i << endl ;

cout << "Using the pointer : "

 << *point_i << endl ;

 // The output will show:

 // Original value: 3

GNUFDL • PID_00148430 15 Object oriented programming in C++

 // Using the pointer: 3

1.7.1. The operators new and delete

Pointers are mainly used in relation to dynamic variables. The two main

functions defined in C for performing these operations are malloc() and

free(), which are used to reserve space and release it, respectively. Both of

these functions are still used in C++. However, C++ also includes two new

operators which provide more robustness. These are new and delete. As they

are included in the language, we do not need to add any specific library.

The new operator reserves the memory. Its format is new followed by the data

type. Unlike with malloc we do not need to indicate the size of memory to

be reserved as the compiler calculates it from the data type being used.

To free the memory we use the delete operator, that is also more robust

than the free()function as it protects against an attempt to free the memory

pointed to by a null pointer.

date * birthday = new date;

...

delete birthday;

If we want to create several elements they can be specified in a vector or

matrix. The result is to declare the variable as a pointer to the first element

of the vector.

Similarly, we can free all of the memory reserved for the vector (each of the

objects created and the vector itself) using the format delete [].

date * fullMoons = new date[12];

...

delete [] fullMoons;

If we omit the square brackets, the result would be to only delete the first

object of the vector but not the others, this creates a memory leak as we then

have reserved memory which can not be accessed in the future.

1.7.2. Pointers const

When declaring pointers in C++ we can use the reserved word const. There

are also other possibilities.

const int * ap_i; // *ap_i remains constant

int * const ap_j;

 // The address ap_j is constant but its value is not

const int * const ap_k;

GNUFDL • PID_00148430 16 Object oriented programming in C++

 // Both the address ap_k and its value *ap_k will remain constant

This means we can make the value of pointers (*ap_i) constant or their

memory address (ap_i) constant, or both of them. So as not to confuse the

issue we can put the reserved word in the subsequent text const.

With the declaration of constant pointers the programmer is telling the

compiler that the value or the address of the pointer will not change. This

means that any attempt to assign a value will be detected by the compiler in

time. This reduces the risk of programming errors.

1.7.3. References

C++ includes a new element to make it easier to manage dynamic variables:

references. A reference is an alias or synonym. When a reference is created it

is initialised with the name of another variable and acts like an alternative

name for it.

To create it we first include the type of the destination variable followed by

the reference operator (&) and the name of the reference. For example,

int i;

int & ref_i = i;

The above expression can be read as: the variable ref_i is a reference to the

variable i. References must always be initialised at the time of their declaration

(as if it were a const).

We should note that, although the reference operator and the address operator

are written in the same way (&), they refer to different operations, even though

they are related. The main attribute of references is that if we ask for its address

they return that of the destination variable.

#include <iostream>

int main()

{

 int i = 10;

 int & ref_i = i;

ref_i = 3; //The value 3 is assigned to the position

 cout << "value of i " << i << endl;

 cout << "address of i " << &i << endl;

 cout << "address of ref_i " << &ref_i <<endl;

}

GNUFDL • PID_00148430 17 Object oriented programming in C++

In this example we can see that the addresses are identical and that the

assignment to ref_i has the same effect as an assignment to i.

References also have the following attributes:

• They can not be reassigned. An attempt to reassign them will become an

assignment to the synonymous variable.

• A null value may not be assigned.

References are mainly used for calling functions as we will see later.

1.8. Functions and their parameters

The use of functions, a basic element in modular programming, still has the

same format: the return value type, the name of the function and the number

of parameters preceded by their type. The parameters list of a function is also

known as the function�signature.

1.8.1. Using parameters by value or by reference

As we have mentioned earlier, there are two ways of passing parameters to a

function in C. By value or by variable. In the first case, the function receives a

copy of the original value of the parameter while in the second it receives the

address of the variable. We can therefore directly access the original variable,

which can also be modified. In C, the traditional method is to pass the pointer

to a variable to the function as a parameter.

We will now look at a function which will allow us to exchange the content

of two variables:

#include <iostream>

void exchange(int *i, int *j);

int main()

{

 int x = 2, y = 3;

 cout << " Before. x = " << x << " y = " << y << endl;

 exchange(&x , &y);

 cout << " After. x = " << x << " y = " << y << endl;

}

void exchange(int *i, int *j)

{

 int k;

 k = *i;

 *i = *j;

 *j = k;

Note

Here we will not use the term
by reference so as not to
confuse with C++.

GNUFDL • PID_00148430 18 Object oriented programming in C++

}

We can see that the use of dereferences (*) makes it harder to understand.

However, in C++ we have a new concept that we mentioned before: references.

This new concept consists of receiving the parameter as a reference instead

of a pointer:

#include <iostream>

void exchange(int &i, int &j);

int main()

{

 int x = 2, y = 3;

 cout << " Before. x = " << x << " y = " << y << endl;

 exchange(x , y); //NO exchange(&x , &y);

 cout << " After. x = " << x << " y = " << y << endl;

} void exchange(int & i, int & j)

{

 int k;

 k = i;

 i = j;

 j = k;

}

The operation of this concept is identical to the previous one, but it is far

easier to read the code when we use the reference operator (&) to collect the

memory addresses of the parameters.

However, we must remember that references also have limitations (they can

never take a null value and they can not be reassigned). As such, references

can not be used for passing parameters when we want to pass a pointer as a

parameter and it can be modified (for example, obtaining the last element of

a queue data structure). Neither can they be used for those parameters which

we wish to consider as optional, as there will always be the possibility that

they could not be assigned to the parameter of a function which calls them,

meaning they will have to take the value null, (which is not possible).

In these cases, passing a parameter by variable must still be done using

pointers.

GNUFDL • PID_00148430 19 Object oriented programming in C++

1.8.2. The use of const

In practice, when programming in C, we sometimes use a pass by variable,

this is more efficient due to the fact that we do not need to make a copy of

the data within the function. With large data structures (structures etc.), this

operation safeguards the original values but it may take some time, we also

run the risk of modifying the data due to an error.

To mitigate these risks, C++ allows us to use the specifier const before the

parameter (as we mentioned in the section on const).

If, in the above exchange function, we had defined the parameters i and j as

const (which would make no practical sense and is just for explanation), we

would get compilation errors.

void exchange(const int & i, const int & j);

{

 int k;

 k = i;

 i = j; // Compilation error. Value i is constant.

 j = k; // Compilation error. Value j is constant.

}

We can therefore get extra efficiency benefits as we avoid the unwanted

copying processes, but we are still protected against unwanted modifications.

1.8.3. Function overloading

C is fairly flexible in the use of function calls as it allows the use of a variable

number of parameters in the call to a function, as long as these are the final

parameters and, in the definition of the function, they have been assigned a

value in case this parameter is not used.

C++ has incorporated a much more flexible option and this is one of the most

notable new aspects with respect to C: it allows the use of different functions

with the same name (function homonymy). This property is also known as

function overloading.

Functions may have the same name but there must be differences in

their parameter lists, either in their number or in their types.

GNUFDL • PID_00148430 20 Object oriented programming in C++

We should note that the return value type of the function is not considered to

be a difference of the function, the compiler will therefore display an error if

we try to define two functions with the same name and an identical number

and type of parameter but the return values are different. The reason for this

is that the compiler can not tell which function you are trying to call.

We will now look at a program which squares different types of numbers:

#include <iostream>

int ToSquare (int);

float ToSquare (float);

int main()

{

 int numInteger = 123;

 float numReal = 12.3;

 int numIntegerSquared;

 float numRealSquared;

 cout << "Example for squaring numbers\n";

 cout << "Original numbers \n";

 cout << "Integer: " << numInteger << "\n";

 cout << "Real number: " << numReal << "\n";

 numIntegerSquared = ToSquare (numInteger);

 numRealSquared = ToSquare (numReal);

 cout << "Numbers squared \n";

 cout << "Integer:"<< numIntegerSquared << "\n";

 cout << "Real number: " << numRealSquared << "\n";

 return 0;

}

int ToSquare (int num)

{

 cout << "Squaring an integer \n";

 return (num * num);

}

float ToSquare (float num)

{

 cout << "Squaring an integer \n";

 return (num * num);

}

GNUFDL • PID_00148430 21 Object oriented programming in C++

Overloading the function ToSquare has allowed us to perform what is

essentially the same operation using a function with the same name. This

means that we do not need to define functions with two different names:

- ToSquareIntegers

- ToSquareRealNumbers

In this way the compiler will identify the function you want to execute by the

type of parameter and will make the correct call.

GNUFDL • PID_00148430 22 Object oriented programming in C++

2. The object oriented programming paradigm

In the previous units we have analysed two programming paradigms (modular

and top-down) which are based on the progressive organisation of data

and the resolution of problems by dividing them into sequential sets of

instructions. The execution of these instructions only depends on the data

defined beforehand.

This allows to overcome many problems but it also has limitations:

• The sharing of data makes it difficult to modify and expand programs, as

they are interrelated.

• Maintenance of large programs becomes extremely complicated as it is

very hard to track the consequences of any changes made to the code.

• The re-use of code can also cause surprises as we may not be aware of all

its implications.

Note

How can this present so many difficulties if people are able to perform complex actions
in their daily lives? The reason is very simple: in our day-to-day lives we do not use the
same criteria. Our environment is described in terms of objects: doors, computers, cars,
lifts, people, buildings etc. and these objects are related in fairly simple ways: if a door is
open you can go through it and if it is closed you can not. If a car has a flat tyre you can
replace the wheel and get back on the road. We do not need to know everything about
the mechanics of a car to be able to perform this operation! However, can we imagine a
world in which replacing a wheel made the windscreen wipers stop working? It would
be chaos. With the previous paradigms this is almost the case, at least we can not be
completely sure it will not happen.

The object oriented programming paradigm proposes a different way of

programming based on the definition of objects and the relationships between

them.

Each object is represented by an abstraction which contains its essential

information without worrying about the other attributes.

This information is made up of data (variables) and actions (functions) and,

unless specifically indicated otherwise, the scope of operation is limited to

this object (Information� hiding). We can use this to limit the scope of

its programming code and therefore the repercussions on the environment

surrounding it. This attribute is called encapsulation.

GNUFDL • PID_00148430 23 Object oriented programming in C++

The relationships between different objects can be very diverse and will

normally involve one object acting on another using messages travelling

between the objects.

One of the most important relationships between objects is the act of

belonging to a more general type. In this case the more specific object shares a

series of attributes (information and actions) with the generic type due to the

fact that they are included in this group. The new paradigm provides a tool

which allows us to re-use all these attributes in a simple way: inheritance.

Lastly, one additional characteristic is the fact that they can behave differently

depending on the context they are set in. This is known as polymorphism

(one object, many forms). This property acquires its full power in that it is able

to adapt this behaviour at the time of execution and not during compilation.

The object oriented programming paradigm is based on these four

pillars: abstraction, encapsulation, inheritance and polymorphism.

2.1. Classes and objects

At the implementation level, a class corresponds to a new data type which

contains a collection of data and functions which can be manipulated.

Example

Imagine we want to describe a video recorder.

The description might include such attributes as the brand, model, number of heads etc.
or it could include its functions, such as the reproduction of video cassettes, recording,
rewinding etc. This means we can look at the same unit from different perspectives.

The first perspective corresponds to a set of variables and the second to a set of functions.

The use of classes allows us to integrate both data and functions within

the same entity.

The act of joining attributes and functions together in the same container

allows them to be more easily related and also allows us to isolate them

from the rest of the source code. In the example of the video recorder, the

reproduction of a tape involves motors moving the tape over a set of heads

which read the information.

The details of the operation of the unit are not that interesting to the user,

we see the video recorder as a box with a slot and some buttons and we are

aware that the innards contain some fairly complicated mechanics. However,

we know that we only have to press the "play" button.

Example

Examples of actions on objects
in everyday life: making a
telephone call, answering the
telephone, speaking, replying
etc.

Example

A dog is an animal, a lorry is a
vehicle etc.

GNUFDL • PID_00148430 24 Object oriented programming in C++

This concept is known as the�encapsulation�of�data�and�functions�in�a�class.

Variables within the class are known as member variables or member data and

functions are known as member functions or class methods.

But classes correspond to abstract elements or generic ideas, and the video

recorder everyone has at home is not an idea but a real object with a set

of attributes and specific functions. Similarly, in C++ we need to work with

specific elements. We will call these elements objects.

2.1.1. Declaring a class

The syntax for declaring a class includes the reserved word class followed

by the name of a class and, between bracers, the list of the member variables

and the member functions

class Dog

{

 // list of member variables

 int age;

 int height;

 // list of member functions

 void bark();

};

The declaration of the class does not imply reserving any memory although

it does indicate the amount of memory that each of the objects in this class

will need.

Example

In the class Dog, each of the objects will occupy 8 bytes of memory: 4 bytes for the
member variable age , which is an integer type, and 4 bytes for the member variable
height. The definitions of the member functions, in our case bark, do not imply the
reservation of space.

2.1.2. Implementing the member functions of a class

Up to now we have only declared two variables as members of the class Dog

(age and height) and one function (bark). But we have not specified the

implementation of the function.

The definition of a member function is done using the name of the class

followed by the scope operator (:: , the name of the member function and

its parameters.

class Dog

{

 // list of member variables

GNUFDL • PID_00148430 25 Object oriented programming in C++

 int age;

 int height;

 // list of member functions

 void bark();

};

Dog:: bark()

{

 cout << "Woof";

}

Note

Although this is the usual way, we can also implement the member functions as inline.
To do this we insert the declaration of the method after the declaration of the method
and before the semi-colon (;):

class Dog
{
 // list of member variables
 int age;
 int height;

 // list of member functions
 void bark()
 { cout << "Woof"; };
};

These types of calls are only useful when the body of the function is very small (one or
two instructions).

2.1.3. The member functions const

In the previous chapter we looked at the usefulness of variables which are

not modified during the course of the execution of the program and their

declaration using the specifier const. We also looked at the added safety

provided by const. We can also define member functions as being const.

void bark() const;

To indicate that a member function is const, we need to put the reserved word

const between the closing bracket after the parameter and the semi-colon (;)

at the end.

This tells the compiler that this member function cannot modify the object.

Any attempt to assign a member variable or to call a non-constant function

will generate an error in the compiler. This makes it a useful tool for the

programmer to ensure the coherence of the lines of source code.

GNUFDL • PID_00148430 26 Object oriented programming in C++

2.1.4. Declaring an object

In the same way that a class is similar to a new data type, an object only

corresponds to the definition of an element of said type. The declaration of

an object therefore uses the same model:

unsigned int numberFleas; // Unsigned int type variable

Dog sultan; // object in the class Dog.

An object is an individual instance of a class.

2.2. Accessing objects

To access the member variables and functions of an object we use the point

operator (.), we write the name of the object followed by a point and then the

name of the desired variable or function.

In the previous section we defined an object called sultan in the class Dog,

if we want to initialise the age of sultan to 4, or call the function bark(),

we only need to refer to it as follows:

sultan.age = 4;

sultan.bark();

However, one of the main advantages provided by classes is that only the

members we are interested in (both data and variables) are shown. For this

reason, the members of a class are only visible from the functions of that class,

unless indicated otherwise. In this case we say that the members are private.

In order to control the scope of the members of a class, we can use the

following reserved words: public, private and protected.

When we declare a member (either a variable or a function) as private we

are telling the compiler that the use of this variable is private and is restricted

to within this class. However, if we declare it as public, it will be accesible

from any place where objects of this class are used.

In the source code these reserved words are used in the form of labels before

members of the same scope:

class Dog

{

 public:

 void bark();

 private:

Note

protected is a more specific
case which we will look at in
the section on "Inheritance".

GNUFDL • PID_00148430 27 Object oriented programming in C++

 int age;

 int height;

};

Note

We have declared the function bark() to be public allowing access from outside the
class, but we have kept the values for age and height hidden by declaring them private.

Now we will look at their implementation in a complete program:

#include <iostream>

class Dog

{

 public:

 void bark() const

 { cout << "Woof"; };

 private:

 int age;

 int height;

};

int main()

{

 Dog sultan;

 //Compilation error. Use of a private variable

 sultan.age = 4;

 cout << sultan.age;

}

In the main block we have declared an object sultan of the class Dog. We

then tried to assign the value of 4 to the member variable age. As this variable

is not public the compiler will show an error indicating that it does not have

access to it. We will also get a similar compilation error for the next line. One

solution in this case would be to declare the member variable age as public.

2.2.1. Member data privacy

The act of declaring a member variable as being public limits the flexibility of

classes, as modifying the type of the variable will also affect the various parts

of the code where these values are used.

GNUFDL • PID_00148430 28 Object oriented programming in C++

A general design recommendation is to keep the member data private

and to manipulate them using public access functions for obtaining or

assigning a value.

In our example we could use the functions getAge() and assignAge() as

methods of accessing the data. Declaring the age to be private allows us to

change the type from integer to byte, or even to replace the data by the date

of birth. The modification will be limited to changing the source code in the

access methods, but it will continue to be transparent outside of the class, the

age can be calculated from the date of birth and the current data or we can

assign an approximate date of birth using the value for age.

class Dog

{

 public:

 Dog(int, int); // constructor method

 Dog(int); //

 Dog(); //

 ~Dog(); // destructor method

 void assignAge(int); // access methods

 int getAge(); //

 void assignHeight(int); //

 int getHeight(); //

 void bark(); // class methods

 private:

 int age;

 int height;

};

Dog:: bark()

{ cout << "Woof"; }

void Dog:: assignHeight (int nHeight)

{ height = nHeight; }

int Dog:: getHeight (int nHeight)

{ return (height); }

void Dog:: assignAge (int nAge)

{ age = nAge; }

int Dog:: getAge()

GNUFDL • PID_00148430 29 Object oriented programming in C++

{ return (age); }

2.2.2. The pointer this

Another important aspect of member functions is that they always have access

to the object itself using the pointer this.

In fact, the member function getAge can also be expressed in the following

way:

int Dog:: getAge()

{ return (this->age); }

It does not seem very important if we look at it in this way. However, being

able to refer to the object either using the this pointer or in its dereferenced

form (*this) makes it very powerful. We will look at more advanced examples

of this when we look at operator overloading.

2.3. Object constructors and destructors

In general, we always initialise a variable after defining it. This is good practice

in that we are trying to prevent unpredictable results caused by using a variable

without having assigned a value to it beforehand.

Classes can also be initialised. Each time we create a new object, the compiler

calls on a specific class method for initialising its values, this is called the

constructor.

The constructor always receives the name of the class, without a return

value (not even void), and it can have initialisation parameters.

Dog::Dog()

{

 age = 0;

}

or

Dog::Dog(int nAge)// New age for the dog

{

 age = nAge;

}

GNUFDL • PID_00148430 30 Object oriented programming in C++

If the constructor is not specifically defined in the class, the compiler uses the

predetermined�constructor, this consists of the name of the class with no

parameters and the instruction block is empty. It therefore does nothing.

Dog::Dog()

{ }

This attribute sounds disconcerting but it allows us to keep the same criteria

for the creation of all objects.

In our case, if we want to initialise an object of the class Dog with an initial

age of 1, we will use the following definition of the constructor:

Dog(int newAge);

The call to the constructor would therefore take the following form:

Dog sultan(1);

If there are no parameters, the declaration of the constructor to be used within

the class would be as follows:

Dog();

The declaration of the constructor in main or any other function of the body

of the program would be done as follows:

Dog sultan();

However, this is a special case and we can apply an exception to the rule stating

that all calls to functions must be followed by brackets even if they do not

have parameters. The final result will be as follows:

Dog sultan;

The above fragment is a call to the constructor Dog() and matches the form

of declaration presented at the beginning and that we have already looked at.

Whenever we declare a constructor method, we must also declare a destructor

method which will clean up the object and free the memory when it is not

going to be used anymore.

The destructor is always preceded by a wavy line (~), it takes the name

of the class and does not have parameters or a return value.

GNUFDL • PID_00148430 31 Object oriented programming in C++

~Dog();

If we do not define a destructor, the compiler will define a predetermined

destructor. The definition is exactly the same but the instruction body will

always be empty:

Dog::~Dog()

{ }

If these new definitions are incorporated into the program, the final result

will be as follows:

#include <iostream>

class Dog

{

 public:

 Dog(int age); // constructor with a parameter

 Dog(); // predetermined constructor

 ~Dog(); // destructor

 void bark();

 private:

 int age;

 int height;

};

Dog:: bark()

{ cout << "Woof"; }

int main()

{

 Dog sultan(4); // Initialisation of object

 // with the age of 4.

sultan.bark();

}

2.3.1. The copy constructor

As well as providing predetermined constructor and destructor methods for

classes, the compiler also provides a copy constructor.

GNUFDL • PID_00148430 32 Object oriented programming in C++

Each time we create a copy of an object we call the copy constructor. This

includes cases in which an object is passed as a value parameter to a function

or the object is returned by a function. The purpose of the copy constructor

is to copy the member data of the object to a new one. This process is also

known as shallow copying.

This procedure is generally correct but it may cause serious conflicts if there

are pointers between the member variables. The result of a shallow copy would

be that two pointers (that of the original object and the copy) both point to

the same memory address: if one of them frees this memory the other will not

know this and it will be pointing to a lost memory position, this situation can

have unpredictable results.

The solution in these cases is to replace the shallow copy with a deep copy in

which new memory positions are reserved for pointer type elements and they

are assigned the content of the variables pointed to by the original pointers.

This constructor is declared as follows:

Dog :: Dog (const Dog & adog);

In this declaration we can see the advantage of passing the parameter as a

constant reference as the constructor does not need to alter the object.

The usefulness of the copy constructor can be seen more clearly when one of

the attributes is a pointer. For this reason, in this test we will change the age

type to an integer pointer. The final result will be as follows:

class Dog

{

 public:

 Dog(); // predetermined constructor

 ~Dog(); // destructor

 Dog(const Dog & rhs); // copy constructor

 int getAge(); // access method

 private:

 int *age;

};

Dog:: getAge()

{ return (*age) }

Dog:: Dog () // Constructor

{

age = new int;

* age = 3;

GNUFDL • PID_00148430 33 Object oriented programming in C++

}

Dog:: ~Dog () // Destructor

{

 delete age;

 age = NULL;

}

Dog:: Dog (const Dog & rhs) // Copy constructor

{

 age = new int; // New memory reserved

 *age = rhs.getAge(); // Copies the age value

 // to the new position

}

int main()

{

 Dog sultan(4); // Initialised with age 4.

}

2.3.2. Initialise values in the constructor methods

There is another way of initialising values in a constructor method which is

cleaner and more efficient, consisting of inserting this initialisation between

the definition of the parameters of the method and the bracer indicating the

start of the block of code.

Dog :: Dog () :

 age (0),

 height (0)

{ }

Dog:: Dog (int nAge, int nHeight):

 age (nAge),

 height(nHeight)

{ }

As we can see in the above fragment, initialisation consists of a colon symbol

(:) followed by the variable to be initialised and, between brackets, the value

that we want to assign. This value may be either a constant or a parameter of

the aforementioned constructor. If more than one variable is to be initialised,

they should be separated by commas (,).

GNUFDL • PID_00148430 34 Object oriented programming in C++

2.3.3. Static member variables and member functions

Up until now, when we have referred to classes and objects, we have situated

them on different levels: classes describe abstract entities and objects describe

created elements with specific values.

However, there are times when objects need to refer to an attribute or a

method they have in common with the other objects in the same class.

Example

If we are creating the class of Animals, we might want to keep the total number of dogs
created up to now in a variable, or write a function which allows us to count the dogs
even if none have been created yet.

The solution is to precede the declaration of the member variables or the

member functions with the reserved word static. By doing this, we are

telling the compiler that this variable or this function refers to the class in

general and not to a specific object. We can also consider that this data or

function is being shared with all the instances of said object.

The following example defines a static member variable and a static member

function:

class Dog {

// ...

static int numberOfDogs; //would normally be private

static int howmanyDogs() { return numberOfDogs; }

};

Accessing them can be done in two ways:

• From an object in the Dog class.

Dog sultan = new Dog();

sultan.numberOfDogs; //would normally be private

sultan.howmanyDogs();

• Using the class identifier without defining any objects.

Dog::numberOfDogs; //would normally be private

Dog::howmanyDogs();

There is an important aspect we need to remember: member variables and

functions which are static always refer to the class and not to a specific

object, meaning that the object this does not exist.

GNUFDL • PID_00148430 35 Object oriented programming in C++

One consequence of this is that in static member functions we can not make

either a direct or an indirect reference to the object this and:

• They can only make calls to static functions as non-static functions will

always implicitly wait for said object as a parameter

• They can only access static variables because non-static variables are

always accessed through said object.

• These functions can not be declared as const as this would make no sense.

2.4. The organisation and use of libraries in C++

Up to now we have always included the class definition and the code which

uses it in the same archive, however this is not the best layout if we want to

re-use the information.

We recommend dividing the source code of the class into two files, so

separating the definition of the class and its implementation.

• The header file incorporates the definition of the class. The extension of

these files can vary between several possibilities and the final decision is

an arbitrary one.

• The implementation file for the class methods containing an "include" for

the header file. The extension used for these files may also vary.

When we want to use this class later on we only need to include a call to the

class header file in the source code.

In our example, the implementation is found in the file dog.cpp, which has

an include for the header file dog.hpp.

File dog.hpp (class header file)

class Dog

{

 public:

 Dog(int age); //constructor methods

 Dog();

 ~Dog(); // destructor method

 int getAge(); // access methods

 int assignAge(int);

 int assignHeight(int);

 int getHeight();

 void bark(); // actual methods

 private:

Note

The standard extensions
used are .hpp (used more in
Windows environments), .H
and .hxx (used more in Unix
environments) and even .h
(the same as in C).

Note

The most standard extensions
used are .cpp (more
frequently used in Windows
environments) .C and .cxx
(more frequently used in Unix
environments).

GNUFDL • PID_00148430 36 Object oriented programming in C++

 int age;

 int height;

};

File dog.cpp (implementation file for the class)

#include <iostream> //needed for cout

#include <dog.hpp>

Dog:: bark()

{ cout << "Woof"; }

void Dog:: assignHeight (int nHeight)

{ height = nHeight; }

int Dog:: getHeight (int nHeight)

{ return (height); }

void Dog:: assignAge (int nAge)

{ age = nAge; }

int Dog:: getAge()

{ return (age); }

File example.cpp

#include <dog.hpp>

int main()

{

 //Initialising the object with age 4.

 Dog sultan(4);

 sultan.bark();

}

2.4.1. Standard libraries

Compilers usually include a set of additional functions for the programmer

to use. GNU provides a standard library of functions and objects for C++

programmers, this is called libstdc++.

This library provides input/output operations using streams, stringsvectors,

lists, comparison algorithms, mathematical operations and ordering

algorithms, among many others.

GNUFDL • PID_00148430 37 Object oriented programming in C++

2.4.2. Using STL libraries

C++ has incorporated a new level of abstraction with the introduction of

templates, also known as parameterised� types. This subject does not fall

under the scope of this course but the inclusion of the STL (Standard Template

Library) in C++ is a very powerful feature and we should take a brief look at

how it is used.

The basic idea of templates is simple: When we implement a general operation

using an object (a list of dogs for example) we define the various operations

for manipulating a list based on the class Dog. If we then want to perform a

similar operation with other objects (a list of cats), the resulting code for the

maintenance of the list is similar but the elements are defined based on the

class Cat. The best way to go about this will be to make a copy and paste and

modify the copied block so that it works with the new class. However, this

process must be repeated each time we want to implement a new list with

another type of object (a list of horses for example).

What is more, each time we want to modify an operation for the lists, we will

have to change each of the customisations. We can therefore quickly see that

this implementation will not be efficient.

A more efficient way to do it would be to generate a generic code that performs

the operations of the lists for a type which can be indicated later on. This

generic code is what we call a template, or a parameterised type.

From this brief summary we can see the efficiency and power of this new

attribute, and also its complexity, but, as we have mentioned, this goes

beyond the scope of this course. However, this subject is essential for a deeper

understanding of C++ and we recommend you read other textbooks in order

to learn about it.

While the definition and implementation of a template library may become

extremely complicated, the use of Standard Template Libraries (STL) is

somewhat easier.

In the following example we will work with the class set which defines a set

of elements. As such, we will include the set library which is contained in

the STL.

#include <iostream>

#include <set>

int main()

{

// define a set of integers <int>

set<int> setNumbers;

GNUFDL • PID_00148430 38 Object oriented programming in C++

//add three numbers to the set of numbers

setNumbers.insert(123);

setNumbers.insert(789);

setNumbers.insert(456);

// show how many numbers the

// set of numbers has

cout << "Number set: "

 << setNumbers.size() << endl;

// repeat the process with a set of letters

//define the set of characters <char>

set<char> setLetters;

setLetters.insert('a');

setLetters.insert('z');

cout << "Letter set: "

 << setLetters.size() << endl;

return 0;

}

In this example we have defined a set of numbers and a set of letters. For the

number set we have defined the variable setNumbers using the template set

indicating that we will use elements of the type <int>. This set defines several

methods among which is that of inserting an element in the list (.insert)

and counting the number of elements (.size). For the second of these we

have defined the variable setLetters also using the same template set but

now the elements are of type <char>.

The output of the program will show the number of letter entered into the set

of numbers and then the number of elements entered in the set of letters.

GNUFDL • PID_00148430 39 Object oriented programming in C++

3. Designing object oriented programs

The power of the object oriented programming paradigm does not only lie

in the definition of classes and objects but in the consequences they imply

which can also be used in the programming language.

In this unit we will look at the main properties of this paradigm:

• Homonymy

• Inheritance

• Polymorphism

Once we understand the scope of this paradigm shift, we can apply new rules

for the design of applications.

3.1. Homonymy

As its name indicates, homonymy refers to the use of two or more meanings

(in our case, operations) having the same name.

In object oriented programming, homonymy refers to the use of the same

name to define the same operation several times in different situations,

although the underlying idea is usually the same. The easiest example would

be to define operations which basically have the same objective but for

different objects, with the same name.

In our case we can distinguish between two main forms: what is homonymy

(or the�overloading) of�functions and homonymy�of�operators.

3.1.1. Overloading of functions and methods

We have already seen how function overloading is one of the improvements

which makes C++ much more flexible than C, it is one of the most frequently

used attributes within the definition of classes.

Constructors are a practical example of method overloading. Each class will

have a default constructor which has no parameters and initialises the objects

for this class.

In our example,

Dog::Dog()

{ }

GNUFDL • PID_00148430 40 Object oriented programming in C++

As we have also seen, we could have the situation in which we always want

to initialise this class using a certain age, or a certain age and a certain height.

Dog::Dog(int nAge) // New age of the dog

{ age = nAge; }

Dog::Dog(int nAge, int n:height) // New defin.

{

 age = nAge;

 height = nHeight;

}

In all three cases we are creating an instance of the object Dog. They are

therefore basically performing the same operation although the final result

will be slightly different.

Any other method or function of a class can be overloaded in the same way.

3.1.2. Overloading operators

In the end, an operator is really nothing more than a simplified way of

expressing an operation on one or more operandi, while a function allows us

to perform more complex operations.

Operator overloading is therefore a way of simplifying expressions for

operations between objects.

In our example we could define a function to increase the age of an object Dog.

Dog Dog::increaseAge()

{

 ++age;

 return (*this);

}

// the resulting call would be Sultan.IncreaseAge()

Although the function is very simple, it may be a bit unwieldy to use. In this

case we could consider overloading the operator ++ so that, when applying it

to a Dog object, it automatically increases the age.

Overloading an operator is declared in the same way as for a function. We

use the reserved word operator followed by the operator to be overloaded.

Single-operator functions do not have parameters (with the exception of the

increase or decrease postfix which uses an integer to distinguish it).

#include <iostream>

class Dog

GNUFDL • PID_00148430 41 Object oriented programming in C++

{

 public:

 Dog();

 Dog(nAge);

 ~Dog();

 int getAge();

 const Dog & operator++(); // Operator ++i

 const Dog & operator++(int); // Operator i++

 private:

 int age;

};

Dog::Dog():

 age(0)

{ }

Dog::Dog(int nAge):

 age(nAge)

{ }

int Dog::getAge()

{ return (age); }

const Dog & Dog::operator++()

{

 ++age;

 return (*this);

}

const Dog & Dog::operator++(int x)

 {

 Dog temp = *this;

 ++age;

 return (temp);

}

int main()

{

 Dog sultan(3);

 cout << "The age of Sultan at the start of the program \n " ;

 cout << sultan.getAge() << endl;

 ++sultan;

 cout << "The age of Sultan after one birthday \n " ;

 cout << sultan.getAge() << endl;

GNUFDL • PID_00148430 42 Object oriented programming in C++

 sultan++;

 cout << "The age of Sultan after another birthday \n " ;

 cout << sultan.getAge();

}

In the operator overloading declaration we can see how it returns a const

reference to an object of the type Dog. This protects the address of the original

object from undesired modification.

We can also see how the declarations for the postfix and prefix operator are

practically the same and how only the argument type changes. To distinguish

between these cases, a convention has been established that the postfix

operator should have a parameter of the int kind in the declaration (although

this parameter is not used).

const Dog & operator++(); // Operator ++i

const Dog & operator++(int); // Operator i++

There are also significant differences in the implementation of both these

functions:

• In the case of the prefix operator, the age value of the object is incremented

and the modified object is returned through the pointer this.

const Dog & Dog::operator++()

{

 ++age;

 return (*this);

}

• In the case of the postfix operator, we want to return the value of the object

before it has been modified. For this reason we establish a temporary

variable which collects the original object, modifies it and returns the

temporary variable.

const Dog & Dog::operator++(int x)

{

 Dog temp = *this;

 ++age;

 return (temp);

}

The definition of the overloading of the sum operator, which is a binary

operator, would be as follows:

// In this case, the summing of two Dog type objects

// makes NO LOGICAL SENSE.

GNUFDL • PID_00148430 43 Object oriented programming in C++

// EXCEPT to show how the

// declaration of the operator would be, one

// "possible" result would be to

// return the object Dog on the left hand side of

// the summing operator with the age corresponding to

// the sum of the ages of the two dogs.

const Dog &Dog::operator+(const Dog & rhs)

{

 Dog temp = *this;

 temp.age = temp.age + rhs.age;

 return (temp);

Note

Given the disconcerting logic used in the above example, it becomes clear that we should
not abuse operator overloading. It should only be used in those cases in which it is more
intuitive and makes the program more legible.

3.2. Simple inheritance

Objects are not isolated elements. When we study objects we establish

relationships between them which help us to understand them better.

Example

A dog and a cat are different objects but they have one thing in common: they are
both mammals. Dolphins and whales are also mammals, but they live in a very different
environment, sharks however are not, they fall under the category of fish. What do all
these objects have in common? They are all animals.

We can establish a hierarchy of objects in that a dog is a mammal, a mammal

is an animal, an animal is a living thing etc. We are establishing a relation

between them: is a. This type of relationship is very common: a pea is a seed,

which is a type of vegetable; a hard disk is a storage unit which is, in turn, a

component of a computer.

When saying that one element is a type of another we are establishing a

specialisation: We are saying that the element has some general attributes and

also others which are its own.

Inheritance is a way of representing attributes which are received from the

more general level.

The dog concept inherits all the attributes of mammal, meaning it produces

milk, it breathes using lungs, it moves etc, but it also has its own specific

attributes such as barking or wagging its tail. Dogs can also be divided up

into breeds: German shepherd, poodle, doberman etc. Each one has its own

peculiarities but they inherit all the attributes of dogs.

GNUFDL • PID_00148430 44 Object oriented programming in C++

In order to represent these relationships, C++ allows us to derive one class

from another. In our case, the Dog class is derived from the Mammal class. We

therefore do not need to indicate that the Dog class suckles, breathes using

lungs, or that it moves. As a mammal, it inherits these properties on top of

its own data or functions.

In the same way a Mammal can be implemented as a class deriving from the

Animal class which in turn inherits information from the class of living and

moving things.

Given the relationship between the Dog class and the Mammal class, and

between the Mammal class and the Animal class, the Dog class also inherits

the information of the Animal class. A dog is a living thing that moves!

3.2.1. The implementation of inheritance

To express this relationship in C++, after the name in the declaration we put

a colon(:), the type of derivation (public or private) and the name of the class

it is derived from.

class Dog : public Mammal

We will look at the derivation type later although for the moment we will

consider it to be public. We will now focus our attention on the appearance

of the new implementation:

#include <iostream>

enum BREEDS { GERMAN_SHEPHERD, POODLE,

 DOBERMAN, YORKSHIRE };

class Mammal

{

 public:

 Mammal(); // constructor method

 ~Mammal(); // destructor method

void assignAge(int nAge)

 { age = nAge } ; // access methods

int getAge() const

 { return (age) };

protected:

 int age;

};

class Dog : public Mammal

{

 public:

 Dog(); // constructor method

GNUFDL • PID_00148430 45 Object oriented programming in C++

 ~Dog(); // destructor method

 void assignBreed(BREEDS); // access methods

 int getBreed() const;

 void bark() const

 { cout << "Woof "; }; // own methods

 private:

 BREEDS breed;

};

class Cat : public Mammal

{

 public:

 Cat(); // constructor method

 ~Cat(); // destructor method

 void miaow() const

 { cout << "Miaowww"; } // own methods

};

In the implementation of the Mammal class, we first described the default

constructor and destructor. Given that the member data age that is present in

the Dog class is not an exclusive attribute of this class as all mammals have an

age, we have transferred the member data age and its access methods (getAge

and assignAge) to the new class.

Note

It should be stressed that the declaration of the type protected for the member data
age allows it to be accessed from the derived classes. If we had declared it as private,
the other classes would not have been able to see it or use it, not even the derived classes.
If we had declared it as public, it would be visible from any object, however this is not
advisable.

We have added the new breed data to the Dog class and we have defined

its access methods (getBreed and assignBreed), as well as its predefined

constructor and destructor. We have kept the method bark as a function of

the Dog class: other mammals do not bark.

3.2.2. Constructors and destructors of derived classes

As the Dog class is derived from the Mammal class, Dog objects are essentially

Mammal. It therefore will first call its base constructor, which will create a

Mammal and we then fill in the rest of the information by calling the Dog

constructor.

Mammal data

Dog data

GNUFDL • PID_00148430 46 Object oriented programming in C++

When destroying an object in the Dog class, the process is reversed: First we

call the Dog destructor, thus releasing the specific information, then we call

the Mammal destructor.

We have already seen how to initialise the data of an object in the class we are

defining, but it is also common that in the constructor of a class we will want

to initialise the data belonging to its base class.

The constructor for the Mammal class also performs this task but we may only

be interested in performing this operation for dogs and not for all animals.

In this case we can perform the following initialisation in the constructor of

the Dog class:

Dog :: Dog()

{

 assignBreed(POODLE); // Access to breed

 assignAge(3); // Access to age

};

As assignAge is a method belonging to the base class, it is automatically

recognised.

In the example above we have defined two methods: bark and miaow for the

classes Dog and Cat respectively. Most animals have the ability to make sounds

to communicate, so we could therefore create a common method which we

could call makeSound, and we could give this a general value for all animals

except for dogs and cats, to which we give an individual value:

#include <iostream>

enum BREEDS { GERMAN_SHEPHERD, POODLE,

 DOBERMAN, YORKSHIRE };

class Mammal

{

 public:

 Mammal(); // constructor method

 // destructor method

 ~Mammal();

 void assignAge(int nAge)

 { age = nAge; } ; // access methods

 int getAge() const

 { return (age); };

 void makeSound() const

 { cout << "Sound"; };

 protected:

 int age;

Example

Carrying on with the example
of the Dog class, as well as
initialising its breed we could
also initialise its age (as it is a
mammal it will have an age).

GNUFDL • PID_00148430 47 Object oriented programming in C++

};

class Dog : public Mammal

{

 public:

 Dog(); // constructor method

 ~Dog(); // destructor method

 void assignBreed(BREEDS); // access methods

 int getBreed() const;

 void makeSound() const

{ cout << "Woof "; }; // own methods

 private:

 BREEDS breed;

};

class Cat : public Mammal

{

 public:

 Cat(); // constructor method

 ~Cat(); // destructor method

 void makeSound() const

 { cout << "Miaowww"; } // own methods

};

int main()

{

 Dog adog;

 Cat acat;

 Mammal amammal;

 amammal.makeSound; // Result: "Sound"

 adog.makeSound; // Result: Woof

 acat.makeSound; // Result: Miaow

}

The method makeSound will have an end result depending on whether we

call a Mammal, a Dog or a Cat. With derived classes (Dog and Cat) it is said

that we have redefined�the�member�function of the base class. As such, the

derived class must define the base function with the same signature (return

type, parameters and their types and the specifier const).

GNUFDL • PID_00148430 48 Object oriented programming in C++

We need to distinguish between function redefinition and function

overloading. The first of these deals with functions with the same name

and the same signature in different classes (the base class and the

derived class). In the second case they are functions with the same name

but a different signature that are within the same class.

The result of the redefinition of functions is the hiding of the base function

from the derived classes. In this respect we need to bear in mind that if

we redefine a function in a derived class, all the overloads of this function

in the base class will also be hidden. An attempt to use a hidden function

will generate a compilation error. The solution will be to carry out the same

function overloads in the derived class as in the base class.

However, if we want to we can access the hidden method by typing the name

of the base class before the name of the function, followed by the scope

operator (::).

adog.Mammal::makeSound();

3.3. Polymorphism

In the example, we have been using up to now we have only looked at how

the class Dog (a derived class) inherits data and methods from the Mammal

class (base class). In fact, this relationship is much stronger.

C++ allows the following types of expressions:

Mammal *ap_amammal = new Dog;

In these expressions we do not assign an object from the Mammal class to a

pointer to a Mammal class but we assign it an object from a different class,

the Dog class, although this complies with the situation that Dog is a derived

class of Mammal.

This is, in fact, the nature of polymorphism: the same object can have different

forms. We can assign a mammal object or an object from any of its derived

classes to a pointer to a mammal object.

What is more, this assignation can be done during execution, as we shall see

later on.

GNUFDL • PID_00148430 49 Object oriented programming in C++

3.3.1. Virtual functions

Using the pointer introduced below we can call any method from the Mammal

class. In this specific case, though, it would be really useful to be able to call

the corresponding methods of the Dog class. We can do this using virtual

functions�and�methods:

#include <iostream>

enum BREEDS { GERMAN_SHEPHERD, POODLE,

 DOBERMAN, YORKSHIRE };

class Mammal

{

 public:

 Mammal(); //constructor method

 virtual ~Mammal(); // destructor method

 virtual void makeSound() const

 { cout << "make a sound" << endl; };

 protected:

 int age;

};

class Dog : public Mammal

{

 public:

 Dog(); // constructor method

 virtual ~Dog(); // destructor method

 int getBreed() const;

 virtual void makeSound() const

 { cout << "Woof" << endl; }; // own methods

 private:

 BREEDS breed;

};

class Cat : public Mammal

{

 public:

 Cat(); // constructor method

 virtual ~Cat(); // destructor method

 virtual void makeSound() const

 { cout << "Miaow" << endl; }; // own methods

};

class Cow : public Mammal

{

 public:

GNUFDL • PID_00148430 50 Object oriented programming in C++

 Cow(); // constructor method

 virtual ~Cow(); // destructor method

 virtual void makeSound() const

 { cout << "Moo" << endl; }; //own methods

};

int main()

{

 Mammal * ap_mammals[3];

 int i;

 ap_mammals [0] = new Cat;

 ap_mammals [1] = new Cow;

 ap_mammals [2] = new Dog;

 for (i=0; i<3 ; i++)

 ap_mammals[i] -> makeSound();

return 0;

}

On executing the program, first it declares a vector with 3 pointer type

elements to Mammal and then it initialises several types of Mammals (Cat,

Cow and Dog).

It then runs through this vector and calls the makeSound method for each of

the elements. The output obtained is:

• Miaow

• Moo

• Woof

The program detects the type of object which has been created using new and

calls the function makeSound for each one.

This would have worked the same if the user had been asked to indicate the

order of the animals to the program. The internal operation of the program is

based on detecting the type of object being pointed to during execution, this

then replaces the virtual functions of the object of the base class with those

corresponding to the derived object.

To do all this we defined the member function makeSound of the Mammal

class as a virtual function.

GNUFDL • PID_00148430 51 Object oriented programming in C++

3.3.2. The declaration of virtual functions

When we declare a function of a base class to be virtual we are implicitly

declaring the functions of the derived class to be virtual, meaning they do not

have to be explicitly declared as such. However, we recommend doing so to

make the code clearer.

If the function is not declared as being virtual the program will understand

that it must call the function of the base class, whatever type of pointer it is.

It is also important to note that these are always pointers to the base class

(although it has been initialised with an object from the derived class),

meaning they can only access functions of the base class. If one of these

pointers attempts to access a specific function from the derived class, such

as, for example, getBreed(), it will cause an unknown function error. These

types of functions can only be directly accessed from pointers to objects of

the derived class.

3.3.3. Virtual constructors and destructors

Constructors can not be virtual by definition. In our case, on initialising new

Dog we are calling the constructor for the Dog class and that for the Mammal

class, meaning a pointer is already created to the derived class.

When working with these pointers, one possible operation is to delete them.

For their destruction we would therefore want to call the destructor from the

derived class and then that from the base class. To do this we only have to

declare the base class destructor to be virtual.

The practical rule to follow is to declare a destructor to be virtual when there

are virtual functions within the class.

3.3.4. Abstract data types and pure virtual functions.

We have already said that classes correspond to the level of the ideas while

objects correspond to specific elements.

We could therefore have a class in which it would not make sense to instance

an object, while it would make sense to instance them in derived classes. Here

we are talking about classes which we want to keep strictly in the realm of

ideas, while their derived classes generate our objects.

An example could be the class WorkOfArt having the derived sub-classes:

Painting, Sculpture, Literature, Architecture etc. We could consider the

WorkOfArt class to be an abstract concept and we could refer to specific works

GNUFDL • PID_00148430 52 Object oriented programming in C++

based on a type of art (one of the derived classes). The criteria for declaring

a class as an abstract data type will always be subjective and will depend on

how we want to use the classes in the application.

class WorkOfArt

{

public:

 WorkOfArt();

 virtual ~WorkOfArt ();

 virtual void showWorkOfArt() = 0; //virtual pure

 void assignAuthor(String author);

 String getAuthor();

 String author;

};

class Painting : public WorkOfArt

{

 public:

 Painting();

 Painting (const Painting &);

 virtual ~Painting ();

 virtual void showWorkOfArt();

 void assignTitle(String title);

 String getTitle();

private:

 String title;

};

Painting :: showWorkOfArt()

{ cout << "Photograph Painting \n" }

class Sculpture : public WorkOfArt

{

public:

 Sculpture();

 Sculpture (const Sculpture &);

 virtual ~Sculpture ();

 virtual void showWorkOfArt();

 void assignTitle(String title);

 String getTitle();

private:

 String title;

};

Sculpture :: showWorkOfArt()

{ cout << "Photograph Sculpture \n" }

GNUFDL • PID_00148430 53 Object oriented programming in C++

Within this abstract class we have defined a virtual function which will show

a reproduction of the work of art. This reproduction will vary depending on

the type of art. It could be in the form of a photograph, a video, a reading of

a literary or theatrical text etc.

To declare the WorkOfArt class as an abstract data type, which is therefore not

instanceable by any object, we only need to declare a pure�virtual�function.

To assign a pure virtual function we take a virtual function and assign it to 0:

virtual void showWorkOfArt() = 0;

Now, when we try to instance a WorkOfArt object (using new WorkOfArt),

it would generate a compilation error.

When declaring a pure virtual function we also need to remember that this

member function will also be inherited. We therefore need to redefine this

function in the derived classes. If it is not redefined, the derived class will

automatically become another abstract class.

3.4. Avanced operations using inheritance

Despite the power provided by simple inheritance, sometimes it is not enough.

We will now give you a brief introduction to the more advanced concepts

relating to inheritance.

3.4.1. Multiple inheritance

Multiple inheritance allows a class to be derived from more than one base

class.

Figure 12.

class A : public B, public C

In this example class A is derived from class B and class C. This situation raises

several questions:

• What happens when the two derived classes have a function with the same

name? It could cause a conflict for the compiler due to ambiguity, this

GNUFDL • PID_00148430 54 Object oriented programming in C++

could be resolved by adding a virtual function to class A which redefines

this function, this would explicitly resolve the ambiguity.

• What happens if the classes are derived from a common base class? If class

A is derived from class D passing through class B and class C we will have

two copies of class D (see the illustration), this can cause ambiguities. In

this case the solution is provided by virtual�inheritance.

Figure 13.

Using virtual inheritance we can tell the compiler that we only want one

shared class D, meaning that the B and C classes are defined as virtual.

Figure 14.

class B: virtual D

class C: virtual D

class A : public B, public C

Generally a class only initialises its variables and its base class. When we

declare a class to be virtual, the constructor that initialises the variables will

be that of the most derived class.

GNUFDL • PID_00148430 55 Object oriented programming in C++

3.4.2. Private inheritance

Sometimes we do not need, or even want, derived classes to have access to the

data and functions of the base class. In this case we will use private inheritance.

With private inheritance, the variables and member functions of the base class

are considered to be private, independently of the accessibility declared in the

base class. This means that the functions inherited from the base class will not

be accessible to any function which is not a member of the derived class.

3.5. Guidelines for the analysis and design of programs

The complexity of modern software projects requires that we use the "divide

and conquer" strategy when analysing a problem, breaking down the original

problem into smaller parts that are easier to deal with.

The traditional way of doing this was to break the problem down into simpler

function or processes (top-down design) so that we got a hierarchical structure

of processes and sub-processes.

In object oriented programming we break the problem down in a different way

by focusing on the objects it includes and the relationships between them,

not on the functions involved.

This process is known as:

• Conceptualisation. Projects normally arise from an idea which will guide

its development. It is very useful to identify the general goal we wish to

achieve and to keep this in focus during the various phases of the project.

• Analysis. This involves determining the needs (requirements) that the

program should cover. During this phase all efforts should be focused on

understanding the domain (the scope) of the problem in the real world

(which elements are involved and which are related) and capturing the

requirements.

The first step in the analysis of the requirements is to identify the use

cases, which are descriptions of the various processes of the domain in

normal language. Each use case describes the interaction between an actor

(a person or an element) and the system. The actor will send a message

to the system and this will act in consequence (responding, cancelling,

acting on another element etc.).

From a complete set of use cases we can begin to develop the domain

model, this is a document which contains all the information we know

about the domain. Part of this modelling process is to describe all the

objects which are involved (which may also come to be the design classes).

The model is often expressed in UML (unified modelling language),

however we will not go into that in this unit.

Example

If we were designing an
application for a cash
machine, one use case would
be the withdrawal of cash
from an account.

Example

The following would be
objects in the cash machine
project: the client, the cash
machine, the bank, the
receipt, the money, the credit
card etc.

GNUFDL • PID_00148430 56 Object oriented programming in C++

From the use cases we can describe various scenarios, these are specific

scenarios in which the use case is developed. Working like this, we can

complete the set of possible interactions for our model. Each scenario will

also describe an environment with prior conditions and elements that

activate it.

All these elements can be represented graphically using diagrams to show

the interactions.

We also need to consider the restrictions of the scope in which they are

working and other requirements of the client.

• Design. Using the information from the analysis we focus on the problem

to create the solution. We can consider the design to be the conversion

of the requirements to an implementable software model. The result is a

document that contains the design plan.

Firstly, we will need to identify the classes involved. The first (and

simplest) step will be to write down the various scenarios and to create

a class for each one. Later on we can consolidate them by grouping the

synonyms.

Once the classes of the model have been defined, we can add classes that

will be useful for the implementation of the project (views, reports, classes

for conversions and data handling, the use of devices etc.).

Once we have established the initial set of classes (these can be modified

later on) we can proceed with the modelling of the relationships and the

way they interact. One of the most important points in the definition of

a class is to determine its responsibilities: It is a basic principle that a

class is responsible for something. If we can clearly identify this unique

responsibility, the resulting code will be much easier to maintain. Those

responsibilities which do not correspond to a class are delegated to related

classes.

During this phase we also establish the relationships between the objects

in the design that may or may not coincide with the objects in the analysis.

They may be of different types. The type of relationship we have looked at

most in this unit are generalisation relationships that have subsequently

been implemented using public inheritance, but there are others and each

one has its forms of implementation.

The design information is completed with the inclusion of the dynamics

between the classes: the modelling of the interaction between the classes

themselves using different types of diagrams.

The document that contains all the information on the design of a

program is called the design plan.

Note

UML is a convention which
was established for the
representation of the
information in a model.

Example

In the cash machine project,
one possible scenario would
be that the client wishes
to withdraw money from
an account and there are
insufficient funds.

GNUFDL • PID_00148430 57 Object oriented programming in C++

• Implementation. In order to be able to apply the project we must convert

the design plan into source code, in our case, to C++. The selected

language will provide all the tools and working mechanisms to translate

the definitions of classes, their requirements, their attributes and their

relationships from the world of design to the actual environment. This

phase is focused on efficiently coding each of the elements of the design.

• Testing. During this phase we test that the system does what it is supposed

to do. If it does not, we will need to revise the specifications on the

analysis, design and implementation level. The design of a good series

of tests based on the use cases can avoid many problems with the final

product. It is always better to have good series of tests which generate

many failures during the analysis, design and implementation phases

(allowing them to be corrected) than to find out about these errors during

distribution.

• Distribution. An implementation of the program (prototype) is sent to

the client for evaluation or for final installation.

3.5.1. Ways of developing a project

This is usually carried out using a cascade� process: each of the phases is

completed and once finished and reviewed it is passed to the next phase

without being able to go back to the previous step.

This method appears to be ideal in theory but in practice it is terrible. For this

reason object oriented design and analysis usually uses an iterative�process. As

the software progresses, the phases are repeated to achieve greater refinement,

this means it can be adapted to the changes brought about by a greater

understanding of the project by the designers, the developers and also the

client.

This method provides another advantage in real life: it allows finished versions

to be delivered even though they may need further refining. This allows us to

introduce the idea of "adequate" software versions which can then be refined

further depending on the needs of the client.

GNUFDL • PID_00148430 58 Object oriented programming in C++

Summary

In this unit we have progressed from the C programming environment that

uses the imperative model and is based on sequences of instructions, to

an object oriented model which is based on the use of objects and their

relationships.

We have had to come to understand the advantages of using a more abstract

working model, but also one that is closer to the description of the entitities

that must be managed in the real world and their relationships. These allow

us to focus our attention on the concepts we wish to implement more than

on the lines of code that will eventually be produced.

We have also looked at the tools provided by C++ for implementation: classes

and objects. As well as their definition, we also reviewed the main attributes of

the object oriented model used in C++. We have looked at inheritance between

clases, homonymy and polymorphism.

Lastly we have seen that, due to changes in the philosophy of the new

programming paradigm, we can not apply the same principles to the design

of programs and we have therefore introduced new design rules that are more

appropriate.

GNUFDL • PID_00148430 59 Object oriented programming in C++

Self-evaluation

1. Designing an application which simulates the operation of a lift. The application should
initially define three applications:

LIFT: [1] Enter [2] Exit [0] End

After each operation, it must show the occupancy of the lift.

[1] Enter signifies that a person goes into the lift.
[2] Exit signifies that a person leaves the lift.

2. Expand the above exercise to incorporate the following requirements:

• An operation that shows the status of the lift

LIFT: [1] Enter [2] Exit [3] Status [0] End

• Limit the capacity of the lift to 6 people.
• Limit the load of the lift to 500 kg.
• Request the code and weight of users to allow them to access the lift as per the established

limits.

If access is denied to the user it should display a message saying why:

• < The lift is full >
• < The maximum weight limit has been exceeded >

If the user is allowed to enter the lift, the following message should be displayed: < #Code#
enter the lift>.

When someone enters the lift, it should display a greeting message to occupants (<#code#
says> Hello) and the others should reply individually with the message (<#code# replies>
Hello).

When someone leaves the lift, their code must be requested and the load in the lift must be
updated, the following message must be displayed: <#code# leave the lift>.

When someone leaves the lift, it should display the following message (<#code# says>
Goodbye) and the others should reply individually with the message (<#code# replies>
Goodbye).

To simplify things we will assume that no two passengers have the same code.

After each operation, it should be able to display the status of the lift (occupancy and load).

3. Expand the above exercise to incorporate three possible languages in which the users can
speak.

On entering, the user should also be asked which language they want to use:

LANGUAGE: [1] Catalan [2] Spanish [3] English

• In Catalan the greeting is "Bon dia" and the farewell is "Adéu".
• In Spanish the greeting is "Buenos días" and the farewell is "Adiós".
• In English the greeting is "Hello" and the farewell is "Bye".

GNUFDL • PID_00148430 60 Object oriented programming in C++

Answer key

1.

GNUFDL • PID_00148430 61 Object oriented programming in C++

GNUFDL • PID_00148430 62 Object oriented programming in C++

2.

GNUFDL • PID_00148430 63 Object oriented programming in C++

GNUFDL • PID_00148430 64 Object oriented programming in C++

GNUFDL • PID_00148430 65 Object oriented programming in C++

GNUFDL • PID_00148430 66 Object oriented programming in C++

GNUFDL • PID_00148430 67 Object oriented programming in C++

GNUFDL • PID_00148430 68 Object oriented programming in C++

GNUFDL • PID_00148430 69 Object oriented programming in C++

GNUFDL • PID_00148430 70 Object oriented programming in C++

GNUFDL • PID_00148430 71 Object oriented programming in C++

GNUFDL • PID_00148430 72 Object oriented programming in C++

3.lift03.hpp and lift03.cpp coincide with lift02.hpp and lift02.cpp of exercise 2.

GNUFDL • PID_00148430 73 Object oriented programming in C++

GNUFDL • PID_00148430 74 Object oriented programming in C++

GNUFDL • PID_00148430 75 Object oriented programming in C++

GNUFDL • PID_00148430 76 Object oriented programming in C++

GNUFDL • PID_00148430 77 Object oriented programming in C++

GNUFDL • PID_00148430 78 Object oriented programming in C++

GNUFDL • PID_00148430 79 Object oriented programming in C++

Programming in
Java

David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Josep Anton Pérez López
Lluís Ribas i Xirgo

PID_00148428

GNUFDL • PID_00148428 Programming in Java

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148428 Programming in Java

Index

Introduction... 5

1. The origin of Java... 9

2. General attributes of Java... 11

3. The Java development environment.. 14

3.1. The Java platform ... 15

3.2. My first program in Java. ... 16

3.3. Basic instructions and comments ... 16

4. The differences between C++ and Java.. 18

4.1. Input/output .. 18

4.2. The preprocessor ... 20

4.3. The declaration of variables and constants 21

4.4. Data types .. 21

4.5. The management of dynamic variables 22

4.6. Functions and the passing of parameters 23

5. Classes in Java... 25

5.1. The declaration of objects .. 26

5.2. Accessing objects ... 27

5.3. The destruction of objects .. 27

5.4. Copy constructors ... 28

5.5. Simple inheritance and multiple inheritance 28

6. Inheritance and polymorphism... 30

6.1. The references this and super ... 30

6.2. The Object class .. 30

6.3. Polymorphism ... 31

6.4. Abstract classes and methods ... 31

6.5. Final classes and methods .. 32

6.6. Interfaces ... 32

6.7. Packages ... 33

6.8. The API (applications programming interface) for Java 35

7. The event driven programming paradigm................................. 36

7.1. Events in Java .. 37

8. Execution threads.. 40

8.1. The creation of execution threads .. 40

GNUFDL • PID_00148428 Programming in Java

8.2. The life cycle of execution threads ... 43

9. Applets... 45

9.1. The life cycle of applets.. 46

9.2. How to include applets in an HTML page 47

9.3. My first applet in Java ... 47

10. Programming graphic interfaces in Java.................................... 49

10.1. User interfaces in Java .. 49

10.2. Example of an applet using Swing .. 50

11. Introduction to visual information... 52

Summary.. 53

Self-evaluation.. 55

Answer key.. 56

GNUFDL • PID_00148428 5 Programming in Java

Introduction

In the previous units we have looked at the evolution undergone

by programming languages throughout history and how the various

programming paradigms have developed.

In the beginning the main cost of a computer system was the hardware: The

internal components of computers were voluminous, slow and expensive.

In comparison, the costs generated by the people involved in maintaining

them and in data processing were almost negligible. Also the applications

which could be executed had to be simple due to the physical restrictions.

The emphasis in IT research was basically focused on the creation of smaller

systems which were faster and cheaper.

This situation has changed dramatically over time. The revolution taking

place in the hardware world has allowed the manufacture of computers which

could not even be dreamed of 25 years ago, this revolution has also taken

place in the world of software. In this respect the costs of materials have

reduced dramatically while those for personnel have increased dramatically.

The complexity of software has also increased due to, among other things, the

increase in interactivity with the user.

Many of the lines of research today are aimed at improving performance

during the software development stage in which human involvement is still

fundamental. Much of this effort is focused on the generation of correct code

and the re-use of prior work.

The object oriented programming paradigm has created a much closer

relationship between the software development process and the actual world

which applications represent. The incorporation of computers into many of

the objects which surround us has expanded the number of platforms on

which programs can be developed.

Java is a modern language which was conceived to provide a solution for this

new environment. It is basically an object oriented language which has been

designed to work on multiple platforms. The concept consists of creating a

common intermediate platform for which applications are developed, this will

then translate the generated result for each end machine.

This intermediate step allows us to:

GNUFDL • PID_00148428 6 Programming in Java

• Write each application just� once. Once it has been compiled for the

common platform the application can be executed by any system which

has the intermediate platform installed.

• Writing the common platform just�once. By making a real machine able

to execute the instructions of this common platform, meaning that it is

able to translate them for the real machine, it will be able to execute all

applications developed for this platform.

We therefore get the maximum amount of re-use. The cost of this is sacrificing

some of the speed.

In terms of the generation of correct code, Java has several attributes which we

will look at over the course of this unit. For the moment we should note that

Java is based on C++ which will make it easier for us to learn for a large number

of developers (knowledge re-use), but it has also been freed from many of the

chains which connected C++ to C.

This "Clean up" has had positive consequences:

• The language is simpler as rarely-used complex concepts have been

removed.

• The language is more direct. It has been estimated that Java can reduce

the number of lines required by a quarter.

• The language is purer as it only works with the object oriented

programming paradigm.

The fact that the language is very recent has allowed several attributes to be

included in its core which simply did not exist when other languages were

created, some of these are the following:

• Programming using threads (threads) allows us to take advantage of

multi-processor architecture.

• Communications programming (TCP/IP etc.), which facilitates

networking both locally and over the Internet.

• The programming of applets, mini-applications designed to be executed

by web browsers.

• Support for the creation of graphic user interfaces and an event

management system which facilitates the creation of applications

following the event-driven programming paradigm.

GNUFDL • PID_00148428 7 Programming in Java

In this unit we want to introduce the reader to the new programming

environment and to present the main characteristics, based on your

knowledge of C++ we will be aiming to achieve the following objectives:

1) An understanding of the Java development environment.

2) Be able to program in Java.

3) An understanding of the concepts of the use of threads and their

applications in the Java environment.

4) An understanding of the basics of event-driven programming and the

ability to develop simple examples.

5) The ability to create simple applets .

GNUFDL • PID_00148428 9 Programming in Java

1. The origin of Java

In 1991, engineers from Sun Microsystems were attempting to develop

programs for white goods and small electronic equipment in which processing

power and memory were reduced. This required a programming language

which was easy to develop applications with and which was reliable and could

be adapted to different kinds of electronic devices.

Note

Given the variety of devices and processors existing in the market and their continual
modification, they were looking for a working environment which did not depend on
the machine executing it.

To do this they designed a system based on an intermediate platform which

would run a new executable machine code and this platform would then be in

charge of translating it for the underlying device. This generic machine code

would be oriented towards the mode of operation of most of these devices and

processors meaning that the final translation had to be very fast.

The whole process would consist of writing a program in a high level language

and compiling it to generate generic code (bytecode) which can then be

executed by the platform (the "virtual machine"). This achieves the goal of

having to write code just once and being able to execute it anywhere the

platform is available (Write Once, Run EveryWhere).

They first tried to do this with C++ but its complexity caused many difficulties,

this led them to design a new language which was based on C++ to make

it easier to learn. This new language also included the attributes of modern

languages and reduced its complexity removing those functions which were

not absolutely essential.

The project for this new language was initially known as Oak, but as the name

was already registered it was finally given the name Java. As a consequence,

the virtual machine able to execute this code on any platform was given the

name Java Virtual Machine (JVM - Java virtual machine).

The first attempts at marketing it were unsuccessful but the development of

the Internet promoted multi-platform technologies and the company became

interested in Java. After a series of design modifications Java was first presented

to the world as a computer language in 1995 and in 1996 Sun founded the

company Java Soft which would develop products for this new environment

and facilitate collaboration with third parties. In the same month, the first

rudimentary version of the Jave Development Kit was released: JDK 1.0.

GNUFDL • PID_00148428 10 Programming in Java

The first version of Java appeared at the beginning of 1997 and it was version

1.1, which considerably increased the performance of the language. Java 1.2

came out in 1998 and incorporated significant changes. For this reason, this

and later versions were known as Java 2 platforms. In December 2003 the

last version of the Java 2 platform made available for download from the Sun

website was Java 1.4.2.

The true revolution which drove the expansion of the language was brought

about by the incorporation of a Java interpreter into Netscape Navigator in

1997.

Note

You can find this version at the
following website:
http://java.sun.com

GNUFDL • PID_00148428 11 Programming in Java

2. General attributes of Java

Sun Microsystems describes Java as a language which is simple, object

oriented, distributed, robust, secure, with neutral architecture, portable,

interpreted, high-performance, multi-tasking and dynamic.

Let us take a closer look at these descriptions:

• Simple. In order to make learning it easier, they considered that the most

commonly used languages by programmers were C and C++.

Following on from C++, they designed a new language which was very

close in order to make it easier to understand.

With this in mind, Java has done away with a set of attributes in

C++ which were rarely used and difficult to understand, for example,

multi-inheritance, automatic coercion and operator overloading.

• Object�oriented. Briefly put, object oriented design focuses on the design

of data (objects), their functions and their relationships (methods). This

essentially follows the same criteria as C++.

• Distributed. Java includes a large library of routines which allow us to

work more easily with TCP/IP, HTTP and FTP protocols for example. We

can create network connections using URL addresses with the same ease

as we can working in the local area.

• Robust. One of the aims of Java is to make programs more reliable. To do

so, its creators focused on three main aspects:

– Strict control of compilation over time with the aim of detecting

problems as quickly as possible. To do this, it uses a strong type control

strategy similar to the one used by C++, although avoiding some of

the bottlenecks often caused by C compatibility. It also allows for type

control during linking.

– It checks for any dynamic errors during execution.

– It eliminates situations which are likely to generate errors. The most

significant of these is the management of pointers. It treats them as

true vectors and controls the possible index values. As it does not

use pointer arithmetic (summing displacement to a memory location

without limit control) it prevents memory over-writing and data

corruption.

GNUFDL • PID_00148428 12 Programming in Java

• Security. Java is oriented towards network distributed environments and,

therefore, a great deal of emphasis has been placed on security against

viruses and intrusions as well as on authentication.

• Neutral� architecture. In order to be able to operate on a variety of

processors and operating system architectures, the Java compiler provides

a commonly executable code from any system which has Java run time.

This means that authors of applications do not need to produce different

versions for different systems (such as PC, Apple Macintosh etc.). A Java

compiled code will work on all of them.

To do this Java creates bytecode instructions that are designed to be

easily-interpreted by an intermediate platform (the Java virtual machine)

and translated to the native code of the machine on the fly.

• Portable. Neutral architecture provides many advantages in terms of

portability but it is not the only aspect which has been improved.

Portability is also improved by the libraries. For example, it has a Windows

abstract class and implementations for Windows, Unix and Macintosh.

Example

In Java, no aspects depend on the implementation, such as the size of primitive types,
for example. In Java, unlike with C or C++, the int type refers to a 32 bit integer with
a complement on 2 and the float type refers to a 32 bit number as per the IEEE 754
standard.

• Interpreted. No bytecode in Java is translated to instructions for the native

machine during execution (it is interpreted) and these are not stored in

any location.

• High�performance. We will sometimes want to improve the performance

of the interpretation of the bytecode, although it is already fairly good.

In this case we can translate them to the native code of the machine

executing the application during run time. This requires the compilation

of the JVM language to the language of the machine on which the program

is being executed.

Similarly, bytecode have been designed with the machine code in mind,

making the machine code generation final process very simple. What is

more, the generation of bytecode is very efficient and several optimisation

procedures are applied to them.

• Multi-tasking. The Java language also includes tools for constructing

applications with multiple execution threads, which simplifies use and

makes programs more robust

• Dynamic. Java is designed to adapt to changing environments. For

example, the way code has been implemented in C++ causes a side effect.

If a program uses a class library and this is subsequently changed, we will

need to compile the whole program again and redistribute it. Java avoids

GNUFDL • PID_00148428 13 Programming in Java

this problem by inter-connecting modules later on and this means new

methods and instances can be added without having any effect on the

clients.

The interfaces can be used to specify a set of methods that an object can

perform, but the way in which objects can implement these methods is left

open. A Java class can implement multiple interfaces, although it can only

inherit from a single class. Interfaces provide flexibility and re-usability

by connecting objects according to what we want them to do and not by

what they do.

Classes in Java are represented by a class called Class during run time,

this contains the run time class definitions. As such, it can make type

comparisons during run time meaning we can trust the types in Java,

whereas in C++ the compiler has to trust that the programmer has done

this correctly.

GNUFDL • PID_00148428 14 Programming in Java

3. The Java development environment

There are several options available on the market for developing Java

programs. However, the Java Development Kit (JDK) is freely distributed by

Sun and this is a set of programs and libraries that allow the development,

compilation and executions of programs in Java. Besides, a debugger is also

included for error detection.

It also includes tools which allows all the previous components (IDE

- integrated development environment) to be incorporated and making life easier,

although these may have compatibility issues between platforms or between

resulting files which have not been optimised. For this reason and, in order to

familiarise ourselves with all software creation processes, we have chosen to

use the Sun tool set to develop all the applications included in this book.

Note

Among the IDE's currently available it is worth looking at the Eclipse project, which
follows the open code philosophy and is a very complete development package (SDK
- standard development kit) for most operating systems (Linux, Windows; Sun, Apple etc.).

This package can be downloaded at http://www.eclipse.org.

Another interesting IDE is JCreator, which, apart from developing a commercial version,
it also comes in a light version which is very easy to handle.

This package can be downloaded at http://www.jcreator.com.

Another interesting aspect of Java is that several different types of applications

can be created:

• Independent� applications. A file directly executed on the virtual

machine of the platform.

• Applets. These are mini applications that can not be executed directly on

the virtual machine as they are designed to be loaded and executed by a

web browser. For this reason they have very strict security limitations.

• Servlets. Applications with no user interface which are run on a server and

which are designed to respond to remote navigators (HTML page requests,

sending form data etc.) They usually output files such as HTML files for

example.

All we need to generate any of the above applications is the following:

• A text editor to write the Java source code.

GNUFDL • PID_00148428 15 Programming in Java

• The Java platform which allows you to compile, debug, run and document

your programs.

3.1. The Java platform

A platform is a hardware or software environment that a program needs to be

able to run. Although most platforms can be described as a combination of the

operating system and hardware, the Java platform is different from others in

that it is a software platform that operates on other hardware-based platforms

(GNU/Linux, Solaris, Windows, Macintosh etc.).

The Java platform has two components:

• Virtual Machine (VM). As we have already mentioned, one of the main

characteristics of Java is that it is independent of the hardware platform:

Once they have been compiled, programs can run on any platform.

The strategy used to achieve this is the generation of neutral code (bytecode)

as a result of the compilation. Neutral code is very similar to machine code

and can be executed from a "hypothetical machine" or "virtual machine". To

be able to execute a program on any given platform, we will just need the

"virtual machine" for that platform.

• Application programming interface (API). The Java API is a large collection

of pre-written software which provides many capabilities such as graphics

environments, communications, multi-processing etc. It is organised in

libraries of related classes and interfaces. These libraries are known as

packages.

The following diagram shows the structure of the Java platform and how

the virtual machine isolates the source code (.java) from the hardware of the

machine:

GNUFDL • PID_00148428 16 Programming in Java

3.2. My first program in Java.

Once again, our first experience with the language will be to say hello to the

world. We will divide this into three stages:

1)�The�creation�of�a�source�file. We will use our chosen text editor to write

the code and save it under the name HelloWorld.java.

HelloWorld.java

/**

 * The HelloWorld class shows the message

 * "Hello World" on the standard output.

 */

public class HelloWorld {

 public static void main(String[] args) {

 // Shows "Hello World!"

 System.out.println("Hello World!");

 }

}

2)�Compilation�of�the�program generating a bytecode. For this we will use the

javac compiler, which provides the development environment and translates

the source code to instructions that the JVM can interpret.

After typing "javac HelloWorld.java" in the command interpreter, as

long as there are no errors we will have our first Java program: a file called

HelloWorld.class.

3)�Executing� the�program in the Java virtual machine. Once the bytecode

file has been generated, we can run it in the JVM by typing in the following

instruction so that it can be interpreted by the computer and then the message

"Hello World!" will appear on the screen.

java HelloWorld

3.3. Basic instructions and comments

In this respect, Java remains faithful to C and C++ and keeps the same syntax.

The only consideration to bear in mind is that, in Java, conditional expressions

(for example the if condition) must return a value of the boolean type,

whereas C++, in order to retain compatibility with C, allows numerical values

to be returned and equates 0 to false and any other value to true.

GNUFDL • PID_00148428 17 Programming in Java

As for comments, Java allows those formats from C++ (/* ... */ and // ...) and

it also includes a new one: you can include text between the symbols /** (start

of comment) and */ (end of comment).

In fact, this format is not so much used for commenting as for documentation.

Java provides tools (for example, javadoc) to generate documentation from

source codes that extract the comments made in the program in the following

way.

Example

/**
* Comment text using the new Java format for
* inclusion in automatically created documentation.
*/

GNUFDL • PID_00148428 18 Programming in Java

4. The differences between C++ and Java

As we have already mentioned, Java is based on C++ and provides an

object oriented environment that will be very familiar to most programmers.

However, Java has been designed to improve C++ in many respects, above all

in those which allowed C++ to work in a "non-object oriented way" and which

were included to make it more compatible with C.

4.1. Input/output

As Java was mainly designed to work with graphics, the classes which manage

text input/output are very basic. They are governed by the System class which

can be found in the java.lang library, there are three static objects in this class

which are as follows:

• System.in. This receives data from the standard input (normally the

keyboard) in an object of the InputStream class.

• System.out. This displays the data on the standard output (usually the

screen), an object of the OutputStream class.

• System.err. Displays error messages on the screen.

The basic methods these objects have are the following:

• System.in.read(). Reads a character and returns it as an integer.

• System.out.print(var). Prints a variable of any primitive type.

• System.out.println(var). The same as the last one but with the

addition of a line feed at the end.

Therefore, in order to write a message we only really need to use the

instructions System.out.print() and System.out.println():

int anInteger = 35;

double aDouble = 3.1415;

System.out.println("Displaying a text");

System.out.print("Displaying an integer ");

System.out.println (anInteger);

System.out.print("Displaying a double ");

System.out.println (aDouble);

GNUFDL • PID_00148428 19 Programming in Java

While outputting data is fairly easy, data input is far less accessible as the basic

read element is a character. We will now look at an example that demonstrates

the process for reading a character string:

String myVar;

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

// Input is ended when pressing Enter

myVar = br.readLine();

Reading complete lines can be done using the BufferedReader object, whose

readLine() method calls a character reader (a Reader object) until it finds

the end of line symbol ("\n" or "\r"). But in this case the input stream is an

InputStream object and not a Reader. We will therefore need a class that acts

as a reader for an InputStream. This will be the class InputStreamReader.

However, the above example is valid for Strings. When we want to read an

integer or other data types, they must be converted after reading. However,

this conversion can generate a fatal error in the system if the entered text does

not coincide with the expected type. In this case, Java always obliges us to

use error checks. Error management (which generates exception calls) is done

in the same way as in C++ using the sentence try {... } catch {...}

finally {...}.

We will now look at how we can design a class to return an integer read from

the keyboard:

Read.java

import java.io.*;

public class Read

{

 public static String getString()

 {

 String str = "";

 try

 {

 InputStreamReader isr = new InputStreamReader(System.in);

 BufferedReader br = new BufferedReader(isr);

 str = br.readLine();

 }

 catch(IOException e)

 {

 System.err.println("Error: " + e.getMessage());

 }

 return str; // returns the typed data

 }

GNUFDL • PID_00148428 20 Programming in Java

 public static int getInt()

 {

 try

 {

 return Integer.parseInt(getString());

 }

 catch(NumberFormatException e)

 {

 return Integer.MIN_VALUE; // smallest value

 }

 }

// getInt

 // we can define a function for each type...

 public static double getDouble() {} // getDouble

}

 // Read

The try { ... } block includes the piece of code that may be susceptible

to an error. If one occurs, an exception is launched and caught by the block

catch { ... }.

When converting String types to numbers, the exception which may be

produced is of the type NumberFormatException. There could be more

catch blocks to deal with different types of exceptions. In the example, if

an error occurs, the numerical value returned will be the minimum possible

value an integer can take.

The finally { ... } block is a piece of code which is executed whether an

error occurs or not (for example, close files), although its use is optional.

We can develop functions for each of the primitive types in Java in a similar

way. Lastly, it would read an integer number in the following way:

int i;

...

i = Read.getInt();

4.2. The preprocessor

Java does not have a preprocessor, so several orders (generally originating in

C) are not included. The most well-known of these are the following:

• defines. These orders were used to define constants and in C++ they had

already become fairly redundant as you could declare constvariables, and

they are now implemented using final.

GNUFDL • PID_00148428 21 Programming in Java

• include. This order, which is used to include the content of a file, was

very useful in C++, mainly for the re-use of header files. In Java there

are no header files and the libraries (or packages) are included using the

instruction import.

4.3. The declaration of variables and constants

The declaration of variables stays the same but the method of defining

constants has changed: in Java the variable is preceded by the reserved word

final; we do not need to assign it a value at the time of declaration. However,

once we have assigned it a value it cannot be changed.

final int i;

int j = 2;

...

i = j + 2; // once it has been assigned a value it can not be changed

4.4. Data types

Java classifies data types into two categories: Primitive and reference. The first

of these contains a value while the second contains the memory address where

the information is stored.

The primitive types of data (byte, short, int, long, float, double,

char and boolean) are basically the same as in C++, although there have

been a couple of changes which we will look at now:

• Numerical types have the same size no matter what platform they are

executed on.

• Numerical types may not take the specifier unsigned.

• The char type uses the Unicode character set, which is 16 bit. Characters

0 to 127 correspond to those of the ASCII code.

• If variables are not initialised explicitly, Java automatically initialises the

data to zero (or its equivalent) thus removing any junk values they may

contain.

The reference types in Java are vectors, classes and interfaces. Variables of

this type store their memory address and are therefore similar to pointers in

other languages. However, as explicit operations are not allowed with memory

addresses, to access them we only need to use the name of the variable.

GNUFDL • PID_00148428 22 Programming in Java

Java has also done away with the struct and union types, which can now

be implemented using class and which were kept in C++ for compatibility

with C. It also gets rid of the enum type, although this can be emulated using

numeric constants with the final.

It has also done away with typedefs for the definition of types, which in C++

had already become fairly redundant as the classes Structs, Union and Enum

had become types.

Lastly, only automatic type coercions (typecasting) are permitted for secure

conversions, meaning conversions in which there is no risk of data loss. For

example, it does allow automatic conversion of the int type to the float

type, but not in the reverse direction where the decimals would be lost. If

data may get lost, we need to tell it explicitly that we want to perform a type

conversion.

Another notable aspect of Java is the way it implements vectors. It treats

them as real objects and generates an exception (error) when its limits are

exceeded. They also have a member called length to indicate their length,

which provides added safety by preventing undesired memory access.

Java has two types for working with character strings: String and

StringBuffer. Strings defined between double inverted commas are

automatically converted to String objects and they cannot be modified. The

StringBuffer type is similar, but it allows the modification of its value and

provides methods for manipulation.

4.5. The management of dynamic variables

As we mentioned in our explanation of C++, direct memory management is

a very powerful tool, but it can also be dangerous: any errors in management

can cause very serious problems for the application and even, maybe, for the

system.

Pointers were present in C and C++ due to the use of strings and vectors.

Java provides objects both for strings and vectors, so pointers are no longer

necessary in these cases. The other big requirement, that of passing parameters

by variable, is covered by the use of references.

As the issue of security is given a high priority in Java, the developers decided

not to use pointers, at least not in the way they are used in C and C++.

C++ has two ways of working with pointers:

• Either with their address, even allowing mathematical operations to be

performed on them (pointer).

GNUFDL • PID_00148428 23 Programming in Java

• Or with their content (* pointer).

Java does away with all operations on memory addresses. When we talk about

references , this has a slightly different meaning than in C++. A dynamic

variable is in fact a reference to the object (pointer):

• To see the content of the variable we only need to use the form (pointer).

• To create a new element we can still use the operator new.

• If we assign a reference type variable (an object for example) to another

variable of the same type (an object of the same class) the content is not

duplicated, but the first variable points to the same position of the second

variable. The end result being that both have the same content.

Java does not allow us to operate directly on memory addresses, making

it simpler to access the content: this is done using the name of the

variable (instead of using the dereferenced form *variable_name).

Another of the main risks involved with direct memory management is

associated with correctly freeing the memory occupied by dynamic variables

once they are no longer being used. Java resolves this problem by providing

a tool which automatically frees this space when it detects that a variable

will not be used again. This tool is known as the garbage collector (and it is

part of Java while its programs are running. We do not therefore need to use

the delete instruction, we only need to assign the pointer to null and the

garbage collector detects that the memory area is no longer in use and frees it.

If we want to, instead of waiting for the garbage to be collected automatically,

we can invoke the process using the function gc(). However, this call is only

considered to be a suggestion for the JVM.

4.6. Functions and the passing of parameters

As we already know Java only uses object oriented programming. Therefore,

it does not allow independent functions (they must always be included in

classes) or global functions. What is more, methods must be implemented

within the class definition. This also removes the need for header files. The

compiler itself detects if a class has already been loaded to prevent duplication.

Despite its similarity with the inline functions, it is only formal because it

behaves differently internally: Java does not implement inline.

GNUFDL • PID_00148428 24 Programming in Java

On the other hand, Java still supports function overloading, although it does

not allow the programmer to overload operators despite the fact that the

compiler uses this attribute internally.

In Java all parameters are passed by value.

In the case of primitive data types, the methods always receive a copy of the

original value that cannot be modified.

With reference data types, the value of the reference is also copied. However,

due to the nature of references, the changes made to the variable receiving the

parameter also affect the original variable.

To modify variables passed to the function by parameter we need to include

them as member variables of the class and pass the reference to an object in

this class as an argument.

GNUFDL • PID_00148428 25 Programming in Java

5. Classes in Java

As we have already mentioned, one of the motivations for the creation of

Java was to produce a "pure" object oriented language which always complies

with this programming paradigm. This was not true with C++ to allow it be

compatible with C. Classes are therefore the fundamental components of Java:

everything must be included in a class. Classes are defined in a similar way to

C++, although there are some differences:

Point2D.java

class Point2D

{

 int x, y;

// initialising the coordinate origin

 Point2D()

 {

 x = 0;

 y = 0;

 }

// initialising a specific x,y coordinate

 Point2D(int coordx, int coordy)

 {

 x = coordx;

 y = coordy;

 }

 // calculating the distance to another point

 float distance(Point2D npoint)

 {

 int dx = x - npoint.x;

 int dy = y - npoint.y;

 return (Math.sqrt(dx * dx + dy * dy));

 }

}

• The first difference is the inclusion of the definition of the method inside

the class and not separately, as in C++. Following this criteria we no longer

need the scope operator (::).

• The second difference is that we do not need the semi-colon (;) at the end.

GNUFDL • PID_00148428 26 Programming in Java

• Classes are stored in a file with the same name and with the extension

.java (Point.java).

One attribute Java has in common with C and C++ is that it is also sensitive

to capital letters, meaning that the class Point2D is not the same as point2d

or pOiNt2d.

Java allows more than one class to be stored in a file but only one of these may

be public. This one must have the same name as the file. We will therefore

usually use a different file for each class, with rare exceptions.

Similarly to C++, the attributes (or member variables) and methods (or

member functions) are declared in the class definition, as we can see from the

above example.

5.1. The declaration of objects

Once a class has been defined, to declare an object in that class we only need

to put the name of the class (like with a type) before the name of the object.

Point2D pointOne;

The result is that pointOne is a reference to an object in the class Point2D.

This reference initially has the value null and no memory space will have

been reserved for it. To be able to use this variable to store information we

need to create an instance using the operator new. When this is used, it will

call the constructor of the Point2D object that has been defined.

pointOne = new Point2D(2,2); // initialised to (2,2)

One important difference of Java with respect to C++ is the use of references

to manipulate objects. As we have mentioned before, the assignment of two

variables declared as objects only implies the assignment of its reference:

Point2D pointTwo;

pointTwo = pointOne;

By adding the above instruction we have not reserved any memory for the

reference to the object pointTwo. When making the assignment, pointTwo

will reference the same object pointed to by pointOne, and not to a copy.

Therefore, any changes made to the attributes of pointOne will be reflected

in pointTwo.

GNUFDL • PID_00148428 27 Programming in Java

5.2. Accessing objects

Once an object has been created, any of its attributes and methods can be

accessed using the point (.) operator as in C++.

int i;

float dist;

i = pointOne.x;

dist = pointOne.distance(5,1);

In C++ we could access the object by dereferencing a pointer to that object

(*pointer), in which case, accessing the attributes or methods could be done

using the point operator (*pointer.attribute) or by using the abbreviated

access operator → (pointer→attribute). In Java, as the dereferenced form

*pointer does not exist, neither does the → operator.

Lastly, as with C++, Java allows objects within methods of the class to be

accessed using the object this.

5.3. The destruction of objects

When we have created an object it must be destroyed when it is no longer

in use. The way memory management functions in Java avoids many of the

conflicts that appear in other languages and it allows us to delegate this

responsibility to an automatic process: the garbage collector that detects when

an area of memory is no longer referenced and will free it at a time when the

system is not under pressure.

When working with a class we will sometimes be using additional resources

such as files. Once the activity of a class has finished, we can often close the

activity of these additional resources. In these cases we need to perform a

manual procedure similar to that of destructors in C++. To do this, we can

implement a method called finalise() which is also called by the garbage

collector itself, if it is present. Inside this method we can write the code which

explicitly frees the additional resources we used. The method finalise is

always of the type static void.

class MyClass

{

 MyClass() //constructor

 {

 ... //Initialisation instructions

 }

 static void finalise() //destructor

 {

GNUFDL • PID_00148428 28 Programming in Java

 ... //instructions to free up resources

 }

}

5.4. Copy constructors

C++ has copy constructors to make sure that a complete copy is made of the

data when an assignment is made or when we assign a parameter or the return

value of a function.

Java uses a different philosophy, as we have already seen. Assignments

between objects do not involve copying their content, the second reference

will reference the first object. It therefore always accesses the same content

and no additional memory reservation operation is required. Java does not

need copy constructors as a consequence of this.

5.5. Simple inheritance and multiple inheritance

In Java, to indicate that one class is derived from another (meaning it inherits

some or all of its attributes and methods) we use the term extends. We will

look at the example using dogs and mammals again.

class Mammal

{

 int age;

 Mammal()

 { age = 0; }

 void assignAge(int nAge)

 { age = nAge; }

 int getAge()

 { return (age); }

 void makeSound()

 { System.out.println("Sound "); }

}

class Dog extends Mammal

{

 void makeSound()

 { System.out.println("Woof "); }

}

GNUFDL • PID_00148428 29 Programming in Java

In the above example we are stating that the Dog class has been derived from

the Mammal class. We could also read it in reverse and say that the Mammal

class is the superclass of the Dog class.

In C++ we could use multiple inheritance meaning that methods and

attributes could be received from several classes. This is not possible in

Java, although interfaces provide a similar functionality.

GNUFDL • PID_00148428 30 Programming in Java

6. Inheritance and polymorphism

Inheritance and polymorphism are essential properties of the object oriented

design paradigm. We have already looked at these concepts in the unit on

C++ and they have been maintained in Java. However, their implementation

is slightly different in Java and we will look at this now.

6.1. The references this and super

Sometimes we will want to access the attributes or methods of the object

serving as the base for the object they are in. As we have already seen, both

C++ and Java provide access using the reference this.

What is new in Java is that we can also access the attributes and methods of

the object of the superclass using the reference super.

6.2. The Object class

Another difference between C++ and Java is that all of the objects belong to

the same hierarchical tree, whose root is the Object class which all the others

inherit from: if the definition of a class does not have the term Extends, it

will be assumed that it inherits directly from Object.

We can say that the Object class is the superclass from which all other

classes in Java are directly or indirectly derived.

The Object class provides a series of common methods, among which are the

following:

• public boolean equals (Object obj). This is used to compare the

content of two objects, it returns true if the received object is the same

as the object calling it. If we only want to compare two references to an

object we can use the comparison operators == and !=.

• protected Object Clone. Returns a copy of the object.

GNUFDL • PID_00148428 31 Programming in Java

6.3. Polymorphism

C++ implemented the capability for a variable to be able to take several

forms using object pointers. As we have already mentioned, Java does not

use pointers and covers this function through the use of references, but the

functionality is similar.

Mammal mammalOne = new Dog;

Mammal mammalTwo = new Mammal;

We must remember that in Java the declaration of an object is always

a reference to it.

6.4. Abstract classes and methods

In C++ we saw that classes sometimes correspond to theoretical elements for

which there is no point instancing objects and for which we always have to

create objects of their derived classes.

This was implemented in C++ using pure virtual functions represented in a

slightly peculiar way: they were declared assigning the virtual function to 0.

The implementation in Java is far simpler: we put the reserved word abstract

before the name of the function. On declaring a function to be abstract, we

are indicating that the class is abstract as well. However, we recommend that

this is also specified in the declaration by putting the word abstract in front

of the reserved word class.

The act of defining a function as being abstract means that all derived classes

which can receive this method will redefine it. If they do not, they will inherit

the function as being abstract and will also be abstract as a consequence, which

will prevent us from instancing objects for these classes.

abstract class WorkOfArt

{

 String author;

 WorkOfArt(){} //constructor

 abstract void showWorkOfArt(); //abstract

 void assignAuthor(String nAuthor)

 { author = nAuthor; }

 String getAuthor();

 { return (author); }

GNUFDL • PID_00148428 32 Programming in Java

};

In the example above we have declared the function showWorkOfArt()to

be abstract, meaning it will need to be redefined in derived classes. It is not

therefore defined. We should also note that as it is an abstract class we will

not be able to perform new WorkOfArt.

6.5. Final classes and methods

We have already looked at the concept of final variables. We have seen how

final variables can not be modified once they have been initialised. This

concept can also be applied to classes and methods:

• Final classes do not have, nor can they have, derived classes.

• Final methods can not be redefined in derived classes.

The use of the reserved word final becomes an extra safety measure to

prevent the incorrect or malicious use of the properties of inheritance

that could supplant established functions.

6.6. Interfaces

An interface is a collection of method definitions (without their

implementations) whose function is to define a behaviour protocol that can

be implemented by any class independently of its position in the hierarchy

of classes.

When we indicate that an implemented class is an interface, it is obliged to

redefine all of the defined methods. In this respect, interfaces are similar to

abstract classes. However, while a class can only inherit from a superclass (only

simple inheritance is allowed), it can implement several interfaces. This only

means that it must comply with each of the protocols defined in a class.

We will now look at an example of declaring an interface:

public interface NameInterface extends SuperInterface1,

SuperInterface2

 { body interface }

If an interface has not been specified as public, it will only be accessible

to the classes defined in the same package.

GNUFDL • PID_00148428 33 Programming in Java

The body of the interface contains the declarations for all the methods

included in it. Each declaration ends in a semi-colon (;) as they have

no implementations and they are implicitly considered to be public and

abstract.

The body can also contain constants, in which case they are considered to be

public, static and final.

To indicate that a class implements an interface, we only need to add

the keyword implements in its declaration. Java allows multiple inheritance

between interfaces:

class MyClass extends SuperClass implements Interface1,

interface2

{ ... }

When a class declares an interface it is as if it were signing a contract through

which it commits to implementing the methods of the interface and its

superinterfaces. The only way for it not to do this is to declare the class

as abstract, meaning it can not instance objects and this obligation is

transferred to its derived classes.

At first sight there seem to be many similarities between abstract classes and

interfaces, but there are also significant differences:

• An interface can not implement methods while abstract classes can.

• A class can have several interfaces but only one superclass.

• Interfaces are not part of the class hierarchy meaning that non-related

classes can be implemented in the same interface.

Another relevant aspect of interfaces is that when we define them we are

declaring a new type of reference data. A variable with this data type can be

instanced by any class which implements this interface. This provides another

way of applying polymorphism.

6.7. Packages

Java uses packages to organise classes. A package is a collection of related

classes and interfaces that provide access protection and manage the name

space. Classes and interfaces must always belong to a package.

Note

The classes and interfaces that are a part of the Java platform belong to several packages
depending on their function: java.lang includes the fundamental classes, java.io
contains the input/output classes etc.

GNUFDL • PID_00148428 34 Programming in Java

The organisation of classes into packages largely prevents conflicts in

name choices.

In order to define a class or an interface in a package, we just need to include

the following expression in the first line of the archive:

package myPackage;

If no package is defined, it will be included in the default package (default

package), this solution is fine for small applications or when we are starting

to work with Java.

Accessing the name of the class can be done using the long name:

myPackage.MyClass

Another possibility is to import public classes from the package using the

keyword import. We can then use the name of the class or interface in the

program without prefixing it:

import myPackage.MyClass; //only imports the class

import myPackage.* // only imports the package

We must bear in mind that importing a package does not imply the

importation of the various sub-packages it may contain.

It is a convention that Java by default always imports from the package

java.lang.

To organise the classes and the possible packages, a sub-directory is created

for each package where the various classes in the package are included. Each

package can also contain sub-packages that will be found in a sub-directory.

By organising the files and directories in this way, both the compiler and the

interpreter have an automatic mechanism for locating the classes that other

applications need.

Example

The class graphics.figures.rectangle would be found in the package
graphics.figures and the file would be located in graphics\figures\rectangle. java

Example

Importing java.awt will
not include the sub-package
java.awt.event.

GNUFDL • PID_00148428 35 Programming in Java

6.8. The API (applications programming interface) for Java

The multitude of function libraries provided by the language is one of the

fundamental aspects of Java; these libraries are standard, well documented,

and they also work on all platforms.

This set of libraries is organised into packages and is included in the Java API.

The main classes are as follows:

Table 9.

Package Classes incorporated

java.lang Fundamental classes for the language such as the String class and others.

java.io Input and output classes using data streams, and system files.

java.util Utility classes such as data and class collections, the event model, time utilities, random number
generation and others.

java.math A class containing all mathematical functions.

java.applet A class of utilities to create applets and classes used by applets to communicate with their context.

java.awt Classes that allow the creation of graphic interfaces
for users, to draw images and create graphics.

javax.swing Classes containing graphics components that work
on all Java platforms.

java.security Classes responsible for security in Java (encryption etc.).

java.net Classes with functions for network applications.

java.sql A class that incorporates JDBC for connecting Java to
databases.

GNUFDL • PID_00148428 36 Programming in Java

7. The event driven programming paradigm

All the programming paradigms we have looked at up till now are similar

in that they use a sequential instruction flow and they use data for the

development of the application. In order to function they usually require a

beginning, a sequence of actions and an end.

Figure 15.

Program flow in imperative programming

GNUFDL • PID_00148428 37 Programming in Java

Within this sequential operation the process also receives external events

which may be expected (data input by the user using the keyboard, the mouse

and other methods, the reading of system information etc.) or unexpected

(system errors etc.). Each of these external events is called an event.

In the previous paradigms, events did not alter the projected flow of

instructions: events are used to resolve the instructions and if this is not

possible, the program ends.

In the event-driven programming paradigm there is no single sequence of

actions, it prepares reactions to events that may occur on the execution of the

program. Therefore, in this model it is the data entered which regulates the

sequence of the application. We can also see that applications will need to be

designed differently with respect to previous paradigms: they will be able to

remain active for an indefinite time while they receive and manage events.

Figure 16.

Flow chart for an event driven program

7.1. Events in Java

To manage events Java uses the delegation�event�model. In this model, a

component receives an event and transfers it to the event manager assigned to

manage it (event listener). We therefore have a separation of the code between

the generation of the event and its treatment, thus making programming

easier.

There are four type of elements involved:

GNUFDL • PID_00148428 38 Programming in Java

• The event (what is received). In most cases the operating system

generates the event and manages all the communications operations

with the user and the environment. It will be stored in an object

derived from the Event class and the type of object will depend on

the type of event that has occurred. The main ones are related to

the graphics environment: ActionEvent, KeyEvent, MouseEvent,

AdjustmentEvent, WindowEvent, TextEvent, ItemEvent,

FocusEvent, ComponentEvent, ContainerEvent.

Each of these classes has its own attributes and access methods.

• The source of the event (where it is received). This is the element that

has generated the event and that therefore collects the information either

to treat it or, in our case, to transfer it to the event manager. In graphics

environments this will usually be the element the user has interacted with

(a button, a text box etc.).

• The event manager (who manages it). This is a specialised class that

indicates the desired response for each event. Each manager can respond

to different types of events by assigning to it the appropriate profiles.

• The manager profile (what operations should be implemented by the

manager). To make this task easier, there are interfaces that indicate the

methods to be implemented for each type of event. Usually, the name of

this interface takes the form <nameEvent>Listener.

Example

KeyListener is the interface for keyboard events and includes the three following
methods: keyPressed, keyReleased and keyTyped. In some cases the fact that
all three must be implemented can create an unnecessary load. To deal with this,
Java provides the <nameEvent>Adapter which implements the various void methods
allowing us to redefine only those methods we are interested in.

The main profiles (or interfaces) defined by Java are the

following: ActionListener, KeyListener, MouseListener,

WindowListener, TextListener, ItemListener, FocusListener,

AdjustmentListener, ComponentListener and ContainerListener.

They are all derived from the interface EventListener.

Lastly, we need to establish the relationship between the source of the event

and its manager. To do this, we have to add a method of the following type

in the source class: add<nameEvent>Listener.

Actually, it could be considered that the events are not really sent to the event

manager but that it is the event manager that is assigned to the event.

Example

If we want to add a Listener to
a button object in the Button
class for mouse events we
have to type: button.
addMouseListener
(eventManager).

GNUFDL • PID_00148428 39 Programming in Java

Note

We will be able to understand the functionality of events more easily if we look at a
practical example such as the creation of an applet using the Swing graphics library, which
we will look at more closely in this unit.

GNUFDL • PID_00148428 40 Programming in Java

8. Execution threads

Current operating systems allow for multi-tasking, or at least the appearance

of it when the computer only has a single processor as it will only be able to

perform one operation at a time. However, we can organise the functionality

of this processor so that it shares its time between several activities or it uses

free time in one operation to perform another.

Each of these activities is called a process. A process is a program that

is executed independently and with its own memory space. Multi-tasking

operating systems thus allow several processes to run at the same time.

Each of these processes can have one or more execution threads, each of

which corresponds to a sequential flow of instructions. In this case, all of the

execution threads share the same memory space and use the same context

and the same resources assigned to the process.

Java incorporates the ability for a process to have multiple simultaneous

execution threads. A full explanation of their implementation in Java goes

beyond the scope of this course and we will therefore only look at the basics

for the creation of threads and their life cycle.

8.1. The creation of execution threads

In Java there are two ways of creating execution threads:

• The creation of a new class which inherits from java.lang.Thread and

overloading the run() method for this class.

• Creating a new class using the java.lang.Runnable interface where the

run()method will be implemented, and then creating a Thread object to

which an object of the new class will be passed as an argument.

Wherever possible, we should use the first of these as it is far simpler. However,

if the class already inherits from some other superclass, we will not be able to

derive others from the Thread class (Java does not allow multiple inheritance),

meaning we will have to use the second method.

We will look at examples of each way of creating execution threads:

The�creation�of�execution�threads�deriving�from�the�class� Thread

TestThread.java

GNUFDL • PID_00148428 41 Programming in Java

class TestThread

{

 public static void main(String args[])

 {

 AThread a = new AThread();

 BThread b = new BThread();

 a.start();

 b.start();

 }

}

class AThread extends Thread

{

 public void run()

 {

 int i;

 for (i=1;i<=10; i++)

 System.out.print(" A"+i);

 }

}

class BThread extends Thread

{

 public void run()

 {

 int i;

 for (i=1;i<=10; i++)

 System.out.print(" B"+i);

 }

}

In the above example, two new classes derived from the class Thread: the

classes AThread and BThread. Each of these shows a counter on the screen

that is needed for the initiation of the process.

In the class TestThreads, where we have the method main(), we proceed

with the instancing of an object for each of the Thread classes and execute

them. The final result will be of the following type (though not necessarily

in this order):

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 A9 B9 A10 B10

Lastly, we just need to remember that TestThreads will execute 3 threads:

the main one and the two created ones.

The�creation�of�execution�threads�using�the�interface�Runnable

GNUFDL • PID_00148428 42 Programming in Java

Test2Thread.java

class Test2Thread

{

 public static void main(String args[])

 {

 AThread a = new AThread();

 BThread b = new BThread();

 a.start();

 b.start();

 }

}

class AThread implements Runnable

{

 Thread t;

 public void start()

 {

 t = new Thread(this);

 t.start();

 }

 public void run()

 {

 int i;

 for (i=1;i<=50; i++)

 System.out.print(" A"+i);

 }

}

class BThread implements Runnable

{

 Thread t;

 public void start()

 {

 t = new Thread(this);

 t.start();

 }

 public void run()

 {

 int i;

 for (i=1;i<=50; i++)

 System.out.print(" B"+i);

 }

GNUFDL • PID_00148428 43 Programming in Java

}

In this example we can see that the principal class main() has not changed but

it has implemented the classes AThread and BThread. In each of these, as well

as implementing the Runnableinterface, we need to define an object of the

class Thread and redefine the method start() so that it calls the start()

of the object of the class Thread passing to it the current object this.

We will finish with two points: it is possible to pass a name to each execution

thread to identify it given that the class Thread has the constructor overloaded

to allow this option:

public Thread (String name);

public Thread (Runnable destination, String name);

We can always recover the name using the method:

public final String getName();

8.2. The life cycle of execution threads

The life cycle of execution threads can be represented by the states they go

through:

• New: the thread has been created but is not initialised, meaning it has not

yet executed the method start().

• Runnable: the thread is being executed or is ready to do so.

• Blocked (or not runnable): the thread is blocked by an internal message

sleep(), suspend() or wait() , or by some other internal activity such

as waiting for data to be entered. If it is in this state it will not be included

in the list of tasks to be executed by the processor.

To return to the Runnable state it must receive the internal message resume()

or notify() or it must end the situation that caused the blockage.

• Dead: the usual method for ending a thread is for it to have finished

executing the instructions of the method run(). We could also use the

method stop(), but this option is considered to be "dangerous" and it is

not recommended.

GNUFDL • PID_00148428 44 Programming in Java

Figure 17.

GNUFDL • PID_00148428 45 Programming in Java

9. Applets

An applet is a mini-application in Java designed to be executed on an Internet

browser. To include an applet in an HTML page we only need to include the

information using labels <APPLET> ... </APPLET>.

Most Internet browsers work in a graphics environment. Therefore applet must

be adapted to them using graphic libraries. In this section we will use the

java.awt library, which has been included in Java since the original versions.

We will go further into the libraries available in Java later on in this unit.

The main attributes of applets are as follows:

• .class files are downloaded from an HTTP server to the browser via the

Internet, the JVM then executes them.

• As they use the Internet, they have very strict security restrictions, for

example they can only read and write files from the server (and not

from the local computer), the information they can access on the local

computer is limited etc.

• No applets have their own window and they are executed in a browser

window.

• From a programming point of view, the following aspects are important:

• They do not need the method main. They are executed using other

mechanisms.

• They always derive from the java.applet.Applet class and therefore need

to redefine some of their methods such as init(), start(), stop()

and destroy().

• They often also redefine other methods such as paint(), update() and

repaint() that are inherited from higher classes for graphic tasks.

• They have a series of methods for getting information on the applet

and on other applets being executed on the same page, such as

getAppletInfo(), getAppletContext(), getParameter() etc.

GNUFDL • PID_00148428 46 Programming in Java

9.1. The life cycle of applets

Due to its nature, the life cycle of an applet is more complex than that of a

normal application. Each of the phases of the life cycle is marked by a call to

a method of the applet:

• void init(). It is called when the applet is loaded and contains the

initialisations needed.

• void start(). This is called when the page has loaded and has been

stopped (due to minimisation or switching web pages etc.) and has then

been re-activated.

• void stop(). This is called automatically when the applet. In this method

the threads that are being executed are usually stopped to conserve

resources.

• void destroy(). This method is called to free up the resources (except

the memory) of the applet.

Figure 18.

As applets are graphic applications that appear in a browser window, it can also

be useful to redefine the following method:

• void paint(Graphics g). This function should include all graphics

operations as this method is also called when the applet is drawn for the

first time and when it is re-drawn.

GNUFDL • PID_00148428 47 Programming in Java

9.2. How to include applets in an HTML page

As we have already mentioned, to call an applet from an html page using

<APPLET> ... <\APPLET> labels, these should include at least the following

information:

• CODE = name of the applet (for example, myApplet.class)

• WIDTH = width of the window

• HEIGHT = height of the window

And, optionally, the following attributes:

• NAME = "aname" which allows it to communicate with other applets

• ARCHIVE = "anarchive" where the classes are stored in a .zip or a .jar

• PARAM NAME = "param1" VALUE = "value1" to be able to pass parameters

to the applet.

9.3. My first applet in Java

The best way to understand the operation of applets is with a practical example.

To create our first applet we will follow these steps:

1) Create a source file. We will use our chosen text editor to write the code

and save it under the name HelloWorldApplet.java.

HelloWorldApplet.java

import java.applet.*;

import java.awt.*;

/**

 * The HelloWorld class shows the message

 * "Hello World" on the standard output.

 */

public class HelloWorldApplet extends Applet{

 public void paint(Graphics g)

 {

 // Shows "Hello World!"

 g.drawString("HelloWorld!", 75, 30);

 }

}

GNUFDL • PID_00148428 48 Programming in Java

2) Create an HTML file. We will use the text editor to write the text.

HelloWorldApplet.html

<HTML>

<HEAD>

<TITLE>My first applet</TITLE>

</HEAD>

<BODY>

I would like to send a message to you all:

<APPLET CODE="HelloWorldApplet.class" WIDTH=150 HEIGHT=25>

</APPLET>

</BODY>

</HTML>

3) Compile the program to generate the bytecode.

javac HelloWorldApplet.java"

4) View the HelloWorldApplet.html page from a browser.

GNUFDL • PID_00148428 49 Programming in Java

10.Programming graphic interfaces in Java

The appearance of graphic interfaces was a big step forward in the

development of systems and applications. Until these appeared, programs

were based on text pages (or consoles) and, in general, the flow of information

in these programs was sequential and guided by the various options entered

as the application requested them.

Graphic interfaces provide much faster communications for users and make

it easier for them to interact with the system from many points on the screen.

At any time we can choose from many very diverse operations (for example

entering data, selecting menu options, modifying active forms, changing

applications etc.) and, therefore, from many instruction flows, each one of

which will be a response to an individual event.

Programs that use these interfaces are a clear example of the

event-driven programming paradigm.

Graphic interfaces have evolved over time and new components have

emerged (buttons, drop-down lists, option buttons etc.) to speed up

communication between the user and the computer. Interacting with the

components generates a series of status changes, each one of which is an event

that may cause a certain action to be taken. These are all therefore possible

events.

Graphic interface applications are programmed using a set of graphics

components (from forms to controls such as buttons and labels) that are

defined as individual objects with their own methods and variables.

While variables correspond to new properties needed for the description of the

object (lengths, colours, blocks etc.), method allow us to encode a response

to all of the different events which may happen to that component.

10.1. User interfaces in Java

Ever since version 1.0 Java has implemented a graphics routine package called

AWT (abstract windows toolkit) which is included in the package java.awt

, this contains all of the components needed to construct a graphics user

interface (GUI-graphic user interface) and to manage events. This means that

interfaces generated using this library will work in all Java environments,

including the various browsers.

GNUFDL • PID_00148428 50 Programming in Java

Many aspects of this package were revised and improved in version 1.1,

but there was still one problem: AWT includes components that depend on

the platform, which goes against one of the fundamental pillars of the Java

philosophy.

In version 1.2 (or Java 2) a new graphic interface was implemented that solved

this problem: the Swing package. As well as other advantages over AWT, this

package includes customisable aspects (different looks and feels, such as Metal,

which Java uses for its skin, and proprietary Motifs for Unix and Windows)

and a wide variety of components that can be easily identified as their names

begin with J.

Swing keeps the AWT event management, although this has been enriched

with the javax.swing.event package.

The main problem with this is that some current browsers have not included

it yet, meaning that in applets their use is limited.

Although this course does not cover the development of applications using

graphic interfaces, we can get an idea of the basic concepts and the use of

events by looking at a small example using the Swing library.

10.2. Example of an applet using Swing

In the following example we will define an applet that follows the Swing

interface. The first difference between this and the applet we looked at before

is the inclusion of the package javax.swing.*.

We define the class HelloSwing that inherits from the class Japplet (which

corresponds to applets in Swing). This class includes the definition of the init

method which defines a new button (new Jbutton) and adds it to the screen

panel (.add).

Buttons receive events of the class ActionEvent and its events are managed

by the class that implements the interface ActionListener.

For this function we have declared the class EventManager that, internally,

redefines the method actionPerformed (the only method defined in the

interface ActionListener) so that it opens a new window using the method

showMessageDialog.

Lastly, we just need to tell the class HelloSwing that the class EventManager

will manage the messages from the button. To do this we use the method

.addActionListener(EventManager)

HelloSwing.java

GNUFDL • PID_00148428 51 Programming in Java

import javax.swing.*;

import java.awt.event.*;

public class HelloSwing extends Japplet

{

 public void init()

 { //constructor

 JButton button = new JButton("Press here!");

 EventManager myManager = new EventManager();

 button.addActionListener(myManager); //Button manager

 getContentPane().add(button);

 } // init

} // HelloSwing

class EventManager implements ActionListener

{

 public void actionPerformed(ActionEvent evt)

 {

 String title = "Congratulations";

 String mensaje = "Hello world, from Swing";

 JOptionPane.showMessageDialog(null, message,

 title, JOptionPane.INFORMATION_MESSAGE);

 } // actionPerformed

} // class EventManager

GNUFDL • PID_00148428 52 Programming in Java

11. Introduction to visual information

Although we have been using text mode development environments for

simplicity reasons, in reality integrated development environments (IDE) are

used which incorporate the tools needed by the programmer in the process of

generating runnable source code (editor, compiler, debugger etc.).

However, there is no difference between these in terms of programming

language: it is considered to be "textual" given that the primitive instructions

are expressed using text.

Modern development environments allow us to work in a more visual way in

that we can create windows (forms, reports etc.) by dragging controls to their

position and then entering values for their attributes (colours, measurements

etc.) and the code for each of the events they generate. However, the nature

of the language does not change and it is still considered to be "textual".

Programming using "visual" languages can be considered to be a new

programming paradigm. A visual language is one that manipulates information

visually and supports visual interaction or allows programming using visual

expressions. Their primitive components are therefore graphics, animations,

drawings and icons.

In other words, programs are relationships between different instructions

that are represented graphically. When these relationships are sequential and

the instructions are expressed using words, the programming will be easily

recognisable. However, we have already seen that concurrent programming

and event driven programming do not use sequential instructions and they

usually have a high level of abstraction.

Visual programming is therefore a good technique for describing programs

whose execution flow follows the above-mentioned paradigms.

Despite the confusion brought about by the names of the various

programming environments such as the Microsoft Visual family (Visual C++,

Visual Basic etc.), these languages are still classified as "textual" languages,

although their graphic programming environments mean that they come

close to being visual programming.

GNUFDL • PID_00148428 53 Programming in Java

Summary

In this unit we have looked at a new object oriented programming language

that is independent from the platform where it is being executed. It provides a

virtual machine which runs on each platform. Therefore, a program developer

will only need to write the source code once and compile it to generate a

common "runnable" code, meaning that the application can run in different

environments such as the Unix system, PC systems and Apple Macintosh. This

philosophy is known as "write once, run everywhere".

Java is an evolution of C++ which has been adapted to the conditions

described above. It allows programmers to use their knowledge of the C and

C++ languages so they can learn it more quickly.

As the Java environment is very small, it can be incorporated for use in web

browsers. We took advantage of the fact that the use of these browsers usually

implies the existence of a graphics environment to briefly look at the use of

graphics libraries and the event driven programming model.

Java also includes advanced operations within its language as standard which,

in other languages, would be performed by the operating system or additional

libraries. One of these attributes is the programming of several execution

threads (threads) within a single process. This unit has introduced us to the

subject.

GNUFDL • PID_00148428 55 Programming in Java

Self-evaluation

1. Expand the Read.java class to implement the reading of variables of the type double.

2. Enter the date (requesting a string for the town and three numbers for the date) and return
it in text form.

Example

Input: Barcelona 15 02 2003

Output: Barcelona, 15th February 2003

3. Implement an application that is able to tell if a figure made up of four points is a square,
a rectangle, a rhomboid or another type of polygon.

These would be defined in the following way:

• Square: sides 1, 2, 3 and 4 are equal; 2 diagonals are equal
• Rectangle: Sides 1 and 3, 2 and 4 are equal; 2 diagonals are equal
• Rhomboid: sides 1, 2, 3 and 4 are equal; the 2 diagonals are different
• Polygon: any other situation

To do this we will need to define the class Point2D which defines the x, y coordinates and
the "distance to another point" method.

Example

(0,0) (1,0) (1,1) (0,1) Square

(0.1) (1.0) (2.1) (1.2) Square

(0,0) (2,0) (2,1) (0,1) Rectangle

(0,2) (1,0) (2,2) (1,4) Rhomboid

4) Convert the code of the lift exercise (exercise 3 of unit 4) to Java.

GNUFDL • PID_00148428 56 Programming in Java

Answer key

1.

GNUFDL • PID_00148428 57 Programming in Java

GNUFDL • PID_00148428 58 Programming in Java

2.

GNUFDL • PID_00148428 59 Programming in Java

GNUFDL • PID_00148428 60 Programming in Java

3.

GNUFDL • PID_00148428 61 Programming in Java

GNUFDL • PID_00148428 62 Programming in Java

4.

GNUFDL • PID_00148428 63 Programming in Java

GNUFDL • PID_00148428 64 Programming in Java

GNUFDL • PID_00148428 65 Programming in Java

GNUFDL • PID_00148428 66 Programming in Java

GNUFDL • PID_00148428 67 Programming in Java

GNUFDL • PID_00148428 68 Programming in Java

GNUFDL • PID_00148428 69 Programming in Java

GNUFDL • PID_00148428 70 Programming in Java

GNUFDL • PID_00148428 71 Programming in Java

GNUFDL • PID_00148428 72 Programming in Java

GNUFDL • PID_00148428 73 Programming in Java

GNUFDL • PID_00148428 74 Programming in Java

This coursebook is designed for IT
specialists and developers that are
starting their way in the free
software development universe.
Free Software is developed with
specific collaboration technics and
tools that engage and enable
world-wide communities.
Professionals need to handle
different programming technics,
languages and develop specific
workgroup skills.

The programming languages used in
this module are C, C++ or Java.

>

With support from the

